Improved SMPS modeling for photovoltaic applications by a novel neural paradigm with Hamiltonian-based training algorithm

F. Bonanno, G. Capizzi, G. L. Sciuto
{"title":"Improved SMPS modeling for photovoltaic applications by a novel neural paradigm with Hamiltonian-based training algorithm","authors":"F. Bonanno, G. Capizzi, G. L. Sciuto","doi":"10.1109/ICCEP.2015.7177571","DOIUrl":null,"url":null,"abstract":"This paper discuss as the dynamics of a SMPS can be investigated by recurrent neural network (RNN) based models with an Hamiltonian formulation and function used for the training, so leading to a novel paradigm that we call RNNHT model. By using the calculated state variables in a boost converter a RNN is trained by considering also the minimization of the energy stored according to a defined cost function. Simulation results show the improvements in the dynamic performance output prediction versus some well assessed boost converter models in the recent literature.","PeriodicalId":423870,"journal":{"name":"2015 International Conference on Clean Electrical Power (ICCEP)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2015.7177571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper discuss as the dynamics of a SMPS can be investigated by recurrent neural network (RNN) based models with an Hamiltonian formulation and function used for the training, so leading to a novel paradigm that we call RNNHT model. By using the calculated state variables in a boost converter a RNN is trained by considering also the minimization of the energy stored according to a defined cost function. Simulation results show the improvements in the dynamic performance output prediction versus some well assessed boost converter models in the recent literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于哈密顿训练算法的新型神经模型改进了光伏应用的SMPS建模
本文讨论了SMPS的动力学可以通过基于递归神经网络(RNN)的模型来研究,该模型具有哈密顿公式和用于训练的函数,从而导致我们称之为RNNHT模型的新范式。通过在升压变换器中使用计算的状态变量,同时考虑根据定义的代价函数存储能量的最小化来训练RNN。仿真结果表明,与最近文献中一些评估良好的升压变换器模型相比,该模型在动态性能输出预测方面有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A single input dual buck-boost output reconfigurable converter for distributed generation Overhead transmission lines dynamic line rating estimation in WAMS environments Fast estimation of MPPs in mismatched PV arrays based on lossless model Frontiers of photovoltaic technology: A review Risk-based probabilistic approach to estimate power system security in the Sicilian context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1