Comparison of Hill-Climbing and Artificial Neural Network Maximum Power Point Tracking Techniques for Photovoltaic Modules

Zarrad Ons, J. Aymen, A. Craciunescu, M. Popescu
{"title":"Comparison of Hill-Climbing and Artificial Neural Network Maximum Power Point Tracking Techniques for Photovoltaic Modules","authors":"Zarrad Ons, J. Aymen, A. Craciunescu, M. Popescu","doi":"10.1109/MCSI.2015.24","DOIUrl":null,"url":null,"abstract":"In this paper, two maximum power point tracking (MPPT) algorithms in a photovoltaic electrical energy generation system are analyzed and compared. The Matlab/Simulink is used to establish the model of a photovoltaic system with MPPT function. This system is developed by combining the models of established solar module and DC-DC boost converter with the algorithms of hill climbing (HC) and artificial neural network (ANC), respectively. The system is simulated under different atmospheric conditions and MPPT algorithms. According to the comparisons among the simulation results, it can be concluded that the photovoltaic system with ANN MPPT algorithm is simpler: it does not require knowledge of internal system parameters, needs less calculation, is faster and provides a compact solution for multi-variable problems.","PeriodicalId":371635,"journal":{"name":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, two maximum power point tracking (MPPT) algorithms in a photovoltaic electrical energy generation system are analyzed and compared. The Matlab/Simulink is used to establish the model of a photovoltaic system with MPPT function. This system is developed by combining the models of established solar module and DC-DC boost converter with the algorithms of hill climbing (HC) and artificial neural network (ANC), respectively. The system is simulated under different atmospheric conditions and MPPT algorithms. According to the comparisons among the simulation results, it can be concluded that the photovoltaic system with ANN MPPT algorithm is simpler: it does not require knowledge of internal system parameters, needs less calculation, is faster and provides a compact solution for multi-variable problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏组件爬坡与人工神经网络最大功率点跟踪技术的比较
对光伏发电系统中两种最大功率点跟踪算法进行了分析和比较。利用Matlab/Simulink建立了具有MPPT功能的光伏系统模型。该系统是将太阳能组件模型和DC-DC升压变换器模型分别与爬坡算法(HC)和人工神经网络算法(ANC)相结合而开发的。在不同的大气条件和MPPT算法下对系统进行了仿真。通过仿真结果的比较,可以得出采用ANN MPPT算法的光伏系统更简单,不需要了解系统内部参数,计算量少,速度更快,为多变量问题提供了紧凑的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Multichannel Queueing Models Selection of the Baseline Frame for Evaluation of Electrical Impedance Tomography of the Lungs An Interactive Application for Modeling Two-Dimensional IFS Fractals Stochastic Simulation Method for Linearly Implicit Ordinary Differential Equations A Duplicate Code Checking Algorithm for the Programming Experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1