Automatic facial expression recognition for intelligent tutoring systems

J. Whitehill, M. Bartlett, J. Movellan
{"title":"Automatic facial expression recognition for intelligent tutoring systems","authors":"J. Whitehill, M. Bartlett, J. Movellan","doi":"10.1109/CVPRW.2008.4563182","DOIUrl":null,"url":null,"abstract":"This project explores the idea of facial expression for automated feedback in teaching. We show how automatic realtime facial expression recognition can be effectively used to estimate the difficulty level, as perceived by an individual student, of a delivered lecture. We also show that facial expression is predictive of an individual studentpsilas preferred rate of curriculum presentation at each moment in time. On a video lecture viewing task, training on less than two minutes of recorded facial expression data and testing on a separate validation set, our system predicted the subjectspsila self-reported difficulty scores with mean accuracy of 0:42 (Pearson R) and their preferred viewing speeds with mean accuracy of 0:29. Our techniques are fully automatic and have potential applications for both intelligent tutoring systems (ITS) and standard classroom environments.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"42 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

This project explores the idea of facial expression for automated feedback in teaching. We show how automatic realtime facial expression recognition can be effectively used to estimate the difficulty level, as perceived by an individual student, of a delivered lecture. We also show that facial expression is predictive of an individual studentpsilas preferred rate of curriculum presentation at each moment in time. On a video lecture viewing task, training on less than two minutes of recorded facial expression data and testing on a separate validation set, our system predicted the subjectspsila self-reported difficulty scores with mean accuracy of 0:42 (Pearson R) and their preferred viewing speeds with mean accuracy of 0:29. Our techniques are fully automatic and have potential applications for both intelligent tutoring systems (ITS) and standard classroom environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于智能辅导系统的自动面部表情识别
这个项目探索了面部表情在教学中的自动反馈。我们展示了自动实时面部表情识别如何有效地用于估计单个学生所授课的难度水平。我们还表明,面部表情可以预测个体学生在每个时刻对课程展示的偏好率。在视频讲座观看任务中,使用不到两分钟的面部表情记录数据进行训练,并在单独的验证集上进行测试,我们的系统预测受试者自我报告的难度分数的平均准确率为0:42 (Pearson R),他们偏好的观看速度的平均准确率为0:29。我们的技术是全自动的,在智能辅导系统(ITS)和标准课堂环境中都有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions New insights into the calibration of ToF-sensors Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF A GPU-based implementation of motion detection from a moving platform Face model fitting based on machine learning from multi-band images of facial components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1