Right Ventricle Segmentation of Cine MRI Using Residual U-net Convolutinal Networks

Zexiong Liu, Yuhong Feng, Xuan S. Yang
{"title":"Right Ventricle Segmentation of Cine MRI Using Residual U-net Convolutinal Networks","authors":"Zexiong Liu, Yuhong Feng, Xuan S. Yang","doi":"10.1109/PDCAT46702.2019.00072","DOIUrl":null,"url":null,"abstract":"Right ventricle (RV) segmentation is difficult due to the variable shape and ill-defined borders of the RV. In this paper, we propose a method to segment RV using a residual U-net convolutional network. A U-net shaped network structure is employed in our method to extract RV features in the encoding layers and make end-to-end decisions in the decoding layers. In the encoding layers, several residual blocks are cascaded extract RV features. In the decoding layers, convolutional layers are employed to make the RV predication. Our network is light with less parameters compared with state-of-art networks. Experiments on public datasets demonstrate that our network outperforms most existed automated segmentation method in respect of several commonly used evaluation measures.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Right ventricle (RV) segmentation is difficult due to the variable shape and ill-defined borders of the RV. In this paper, we propose a method to segment RV using a residual U-net convolutional network. A U-net shaped network structure is employed in our method to extract RV features in the encoding layers and make end-to-end decisions in the decoding layers. In the encoding layers, several residual blocks are cascaded extract RV features. In the decoding layers, convolutional layers are employed to make the RV predication. Our network is light with less parameters compared with state-of-art networks. Experiments on public datasets demonstrate that our network outperforms most existed automated segmentation method in respect of several commonly used evaluation measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
残差u网卷积网络在MRI右心室分割中的应用
右心室(RV)由于形状多变和边界不明确,分割是困难的。本文提出了一种利用残差U-net卷积网络分割RV的方法。该方法采用u型网络结构,在编码层提取RV特征,在解码层进行端到端决策。在编码层中,将多个残差块级联提取RV特征。在解码层中,采用卷积层进行RV预测。与最先进的网络相比,我们的网络重量轻,参数少。在公共数据集上的实验表明,在几种常用的评价指标方面,我们的网络优于大多数现有的自动分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RNC: Reliable Network Property Classifier Based on Graph Embedding NFV Optimization Algorithm for Shortest Path and Service Function Assignment I/O Scheduling for Limited-Size Burst-Buffers Deployed High Performance Computing Efficient Fault-Tolerant Syndrome Measurement of Quantum Error-Correcting Codes Based on "Flag" Adaptive Clustering Strategy Based on Capacity Weight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1