{"title":"Predicting microRNA-disease associations by integrating multiple biological information","authors":"Wei Lan, Jianxin Wang, Min Li, Jin Liu, Yi Pan","doi":"10.1109/BIBM.2015.7359678","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are a set of small non-coding RNAs that play critical roles in many human diseases. Identifying potential miRNA-disease association is helpful to explore the underlying molecular mechanisms of disease. Currently, it is expensive and time-consuming to detect miRNA-disease associations with experimental methods. On the other hand, many known associations between miRNAs and diseases provide useful information for new miRNA-disease interaction discovery. In this study, we propose a computational framework to infer the relationship between miRNA and disease by integrating multiple data resources. We use sequence and function information of miRNA and semantic and function information of disease to measure similarity of miRNA and disease, respectively. In addition, kernelized Bayesian matrix factorization method is employed to infer potential miRNA-disease association by integrating these data resources. The experimental results demonstrate that our method can effectively predict unknown miRNA-disease association.","PeriodicalId":186217,"journal":{"name":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2015.7359678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
MicroRNAs (miRNAs) are a set of small non-coding RNAs that play critical roles in many human diseases. Identifying potential miRNA-disease association is helpful to explore the underlying molecular mechanisms of disease. Currently, it is expensive and time-consuming to detect miRNA-disease associations with experimental methods. On the other hand, many known associations between miRNAs and diseases provide useful information for new miRNA-disease interaction discovery. In this study, we propose a computational framework to infer the relationship between miRNA and disease by integrating multiple data resources. We use sequence and function information of miRNA and semantic and function information of disease to measure similarity of miRNA and disease, respectively. In addition, kernelized Bayesian matrix factorization method is employed to infer potential miRNA-disease association by integrating these data resources. The experimental results demonstrate that our method can effectively predict unknown miRNA-disease association.