Predictive analysis for social processes I: Multi-scale hybrid system modeling

R. Colbaugh, K. Glass
{"title":"Predictive analysis for social processes I: Multi-scale hybrid system modeling","authors":"R. Colbaugh, K. Glass","doi":"10.1109/CCA.2009.5280709","DOIUrl":null,"url":null,"abstract":"This two-part paper presents a new approach to predictive analysis for social processes. In Part I, we begin by identifying a class of social processes which are simultaneously important in applications and difficult to predict using existing methods. It is shown that these processes can be modeled within a multi-scale, stochastic hybrid system framework that is sociologically sensible, expressive, illuminating, and amenable to formal analysis. Among other advantages, the proposed modeling framework enables proper characterization of the interplay between the intrinsic aspects of a social process (e.g., the “appeal” of a political movement) and the social dynamics which are its realization; this characterization is key to successful social process prediction. The utility of the modeling methodology is illustrated through a case study involving the global SARS epidemic of 2002–2003. Part II of the paper then leverages this modeling framework to develop a rigorous, computationally tractable approach to social process predictive analysis.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5280709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This two-part paper presents a new approach to predictive analysis for social processes. In Part I, we begin by identifying a class of social processes which are simultaneously important in applications and difficult to predict using existing methods. It is shown that these processes can be modeled within a multi-scale, stochastic hybrid system framework that is sociologically sensible, expressive, illuminating, and amenable to formal analysis. Among other advantages, the proposed modeling framework enables proper characterization of the interplay between the intrinsic aspects of a social process (e.g., the “appeal” of a political movement) and the social dynamics which are its realization; this characterization is key to successful social process prediction. The utility of the modeling methodology is illustrated through a case study involving the global SARS epidemic of 2002–2003. Part II of the paper then leverages this modeling framework to develop a rigorous, computationally tractable approach to social process predictive analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会过程的预测分析I:多尺度混合系统建模
这两部分的论文提出了一种新的方法来预测分析社会进程。在第一部分中,我们首先确定一类在应用中同时重要且难以使用现有方法预测的社会过程。研究表明,这些过程可以在一个多尺度、随机混合系统框架内建模,该框架在社会学上是合理的、富有表现力的、有启发性的,并且可以进行形式分析。除其他优点外,所提出的建模框架能够适当地描述社会过程的内在方面(例如,政治运动的“吸引力”)与实现社会动态之间的相互作用;这种特征是成功预测社会过程的关键。通过一个涉及2002-2003年全球SARS流行的案例研究说明了建模方法的效用。然后,论文的第二部分利用这个建模框架来开发一个严格的、计算上易于处理的方法来进行社会过程预测分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast array algorithms for H∞ information estimation of rectangular discrete-time descriptor systems Predictive analysis for social processes II: Predictability and warning analysis The ideal representations, rocks and realities of statistical methods' identification Identification of linear periodically time-varying systems using periodic sequences An intelligent multi-agent approach for road traffic management systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1