Understanding Human Aging Patterns from a Machine Perspective

Shixing Chen, Ming Dong, Jialiang Le, S. Barbat
{"title":"Understanding Human Aging Patterns from a Machine Perspective","authors":"Shixing Chen, Ming Dong, Jialiang Le, S. Barbat","doi":"10.1109/MIPR.2018.00055","DOIUrl":null,"url":null,"abstract":"Recent research shows that the aging patterns deeply learned from large-scale data lead to significant performance improvement on age estimation. However, the insight about why and how deep learning models achieved superior performance is inadequate. In this paper, we propose to analyze, visualize and understand the deep aging patterns. We first train a series of convolutional neural networks for age estimation, and then illustrate the learning outcomes using feature maps, activation histograms, and deconvolution. We also develop a visualization method that can compare the facial appearance and track its changes at different ages through the mapping between 2D images and a 3D face template. Our framework provides an innovative way to understand human facial aging process from a machine perspective.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent research shows that the aging patterns deeply learned from large-scale data lead to significant performance improvement on age estimation. However, the insight about why and how deep learning models achieved superior performance is inadequate. In this paper, we propose to analyze, visualize and understand the deep aging patterns. We first train a series of convolutional neural networks for age estimation, and then illustrate the learning outcomes using feature maps, activation histograms, and deconvolution. We also develop a visualization method that can compare the facial appearance and track its changes at different ages through the mapping between 2D images and a 3D face template. Our framework provides an innovative way to understand human facial aging process from a machine perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从机器的角度理解人类的衰老模式
最近的研究表明,从大规模数据中深度学习的老化模式可以显著提高年龄估计的性能。然而,关于深度学习模型为什么以及如何获得卓越性能的见解是不够的。在本文中,我们提出了分析、可视化和理解深层老化模式。我们首先训练一系列卷积神经网络用于年龄估计,然后使用特征图、激活直方图和反卷积来说明学习结果。我们还开发了一种可视化方法,可以通过2D图像与3D人脸模板之间的映射来比较面部外观并跟踪其在不同年龄的变化。我们的框架提供了一种从机器角度理解人类面部衰老过程的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications A Multimodal Approach to Predict Social Media Popularity Ownership Identification and Signaling of Multimedia Content Components Deep Learning of Path-Based Tree Classifiers for Large-Scale Plant Species Identification Understanding User Profiles on Social Media for Fake News Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1