Predicting mechanical properties of cold- rolled low carbon steel based on magnetic parameter measurement using ANFIS model

M. Eftekhari, M. Moallem, M. A. Ghadamyari, Hosein Monajati, Davood Asefi, Abbas Kamranian Marnani
{"title":"Predicting mechanical properties of cold- rolled low carbon steel based on magnetic parameter measurement using ANFIS model","authors":"M. Eftekhari, M. Moallem, M. A. Ghadamyari, Hosein Monajati, Davood Asefi, Abbas Kamranian Marnani","doi":"10.1109/IAS.2011.6074385","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method for predicting mechanical properties of cold- rolled low carbon steel based on magnetic parameter measurement using Adaptive Neuro Fuzzy Inference System (ANFIS) is presented. The Yield Stress (YS) and Ultimate Tensile Strength (UTS) are predicted using two ANFIS models on the basis of B-H curve parameter measurement. B-H curve parameter measurement is carried out using a measurement system specially developed for this project. Using this system, remanence (Br), coercive force (Hc), harmonic components of the field intensity, and flux density are extracted and used as input parameters of the ANFIS models. The individual influence of different input parameters is evaluated and compared with metallurgical test results. The ANFIS models show good performance and the results are in agreement with the experimental data. The developed models can be used as an on-line, non-destructive evaluation technique in steel mill factories.","PeriodicalId":268988,"journal":{"name":"2011 IEEE Industry Applications Society Annual Meeting","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2011.6074385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a novel method for predicting mechanical properties of cold- rolled low carbon steel based on magnetic parameter measurement using Adaptive Neuro Fuzzy Inference System (ANFIS) is presented. The Yield Stress (YS) and Ultimate Tensile Strength (UTS) are predicted using two ANFIS models on the basis of B-H curve parameter measurement. B-H curve parameter measurement is carried out using a measurement system specially developed for this project. Using this system, remanence (Br), coercive force (Hc), harmonic components of the field intensity, and flux density are extracted and used as input parameters of the ANFIS models. The individual influence of different input parameters is evaluated and compared with metallurgical test results. The ANFIS models show good performance and the results are in agreement with the experimental data. The developed models can be used as an on-line, non-destructive evaluation technique in steel mill factories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁参数测量的冷轧低碳钢力学性能ANFIS模型预测
提出了一种基于自适应神经模糊推理系统(ANFIS)磁参数测量预测冷轧低碳钢力学性能的新方法。在B-H曲线参数测量的基础上,采用两种ANFIS模型预测了屈服应力(YS)和极限抗拉强度(UTS)。B-H曲线参数测量采用了专门为本工程开发的测量系统。利用该系统提取剩余力(Br)、矫顽力(Hc)、场强谐波分量和磁通密度,并将其作为ANFIS模型的输入参数。评估了不同输入参数的个体影响,并与冶金试验结果进行了比较。该模型具有良好的性能,其结果与实验数据吻合较好。所建立的模型可作为钢厂在线无损评价技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-rates fuel cell emulation with spatial reduced real-time fuel cell modelling Distribution of electric potential at the surface of corona-charged non-woven fabrics A sensorless induction motor drive using a least mean square speed estimator and the matrix converter Connectivity of DC microgrids involving sustainable energy sources A microprocessor-based controller for high temperature PEM fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1