Sachini Sumeera, Nipun Pesala, Maleesha Thilani, A. Gamage, P. Bandara
{"title":"Analyzing Fisheries Market, Shrimp Farming & Identifying Fish Species using Image Processing","authors":"Sachini Sumeera, Nipun Pesala, Maleesha Thilani, A. Gamage, P. Bandara","doi":"10.1109/ICAC57685.2022.10025134","DOIUrl":null,"url":null,"abstract":"The fisheries industry is vital to the Sri Lankan economy because it provides a living for more than 2.5 million coastal communities and meets more than half of the country’s animal protein needs. Today, the fishery community in Sri Lanka is facing several grant problems. Among them, not getting a decent fish price for their harvesting, the inability to identify diseases in shrimp cages in the early stages, and the inability to identify fish species by observing their external appearance. This research developed a prototype mobile application “Malu Malu” to avoid the above-mentioned problems. It facilitates to the prediction of market fish prices, identifying shrimp diseases in their early stages, and identifying fish species by observing their external appearance. The proposed predictive models of the “Malu Malu” contains three main models developed using inseption V3 Convolutional Neural Network (CNN) model for image classification and Linear Regression is used for creating a model for predictions. The experimental results of these models showed above 85% of accuracy.","PeriodicalId":292397,"journal":{"name":"2022 4th International Conference on Advancements in Computing (ICAC)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC57685.2022.10025134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fisheries industry is vital to the Sri Lankan economy because it provides a living for more than 2.5 million coastal communities and meets more than half of the country’s animal protein needs. Today, the fishery community in Sri Lanka is facing several grant problems. Among them, not getting a decent fish price for their harvesting, the inability to identify diseases in shrimp cages in the early stages, and the inability to identify fish species by observing their external appearance. This research developed a prototype mobile application “Malu Malu” to avoid the above-mentioned problems. It facilitates to the prediction of market fish prices, identifying shrimp diseases in their early stages, and identifying fish species by observing their external appearance. The proposed predictive models of the “Malu Malu” contains three main models developed using inseption V3 Convolutional Neural Network (CNN) model for image classification and Linear Regression is used for creating a model for predictions. The experimental results of these models showed above 85% of accuracy.