Predicting Cloud Resource Utilization

M. Borkowski, Stefan Schulte, C. Hochreiner
{"title":"Predicting Cloud Resource Utilization","authors":"M. Borkowski, Stefan Schulte, C. Hochreiner","doi":"10.1145/2996890.2996907","DOIUrl":null,"url":null,"abstract":"A major challenge in Cloud computing is resource provisioning for computational tasks. Not surprisingly, previous work has established a number of solutions to provide Cloud resources in an efficient manner. However, in order to realize a holistic resource provisioning model, a prediction of the future resource consumption of upcoming computational tasks is necessary. Nevertheless, the topic of prediction of Cloud resource utilization is still in its infancy stage. In this paper, we present an approach for predicting Cloud resource utilization on a per-task and per-resource level. For this, we apply machine learning-based prediction models. Based on extensive evaluation, we show that we can reduce the prediction error by 20% in a typical case, and improvements above 89% are among the best cases.","PeriodicalId":350701,"journal":{"name":"2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996890.2996907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

A major challenge in Cloud computing is resource provisioning for computational tasks. Not surprisingly, previous work has established a number of solutions to provide Cloud resources in an efficient manner. However, in order to realize a holistic resource provisioning model, a prediction of the future resource consumption of upcoming computational tasks is necessary. Nevertheless, the topic of prediction of Cloud resource utilization is still in its infancy stage. In this paper, we present an approach for predicting Cloud resource utilization on a per-task and per-resource level. For this, we apply machine learning-based prediction models. Based on extensive evaluation, we show that we can reduce the prediction error by 20% in a typical case, and improvements above 89% are among the best cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测云资源利用率
云计算的一个主要挑战是为计算任务提供资源。毫不奇怪,以前的工作已经建立了许多解决方案,以有效的方式提供云资源。然而,为了实现一个整体的资源供给模型,预测即将到来的计算任务的未来资源消耗是必要的。然而,云资源利用预测这一课题还处于起步阶段。在本文中,我们提出了一种在每个任务和每个资源级别上预测云资源利用率的方法。为此,我们应用基于机器学习的预测模型。基于广泛的评估,我们表明,在典型情况下,我们可以将预测误差降低20%,而89%以上的改进是最好的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Smart Learning Environment for Smart City Governance Public Auditing Scheme for Cloud-Based Wireless Body Area Network (t,p)-Threshold Point Function Secret Sharing Scheme Based on Polynomial Interpolation and Its Application Enterprise IoT Security and Scalability: How Unikernels can Improve the Status Quo Service Topic Model with Probability Distance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1