Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation

H. Alemzadeh, Daniel Chen, Xiao Li, T. Kesavadas, Z. Kalbarczyk, R. Iyer
{"title":"Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation","authors":"H. Alemzadeh, Daniel Chen, Xiao Li, T. Kesavadas, Z. Kalbarczyk, R. Iyer","doi":"10.1109/DSN.2016.43","DOIUrl":null,"url":null,"abstract":"This paper demonstrates targeted cyber-physical attacks on teleoperated surgical robots. These attacks exploit vulnerabilities in the robot's control system to infer a critical time during surgery to drive injection of malicious control commands to the robot. We show that these attacks can evade the safety checks of the robot, lead to catastrophic consequences in the physical system (e.g., sudden jumps of robotic arms or system's transition to an unwanted halt state), and cause patient injury, robot damage, or system unavailability in the middle of a surgery. We present a model-based analysis framework that can estimate the consequences of control commands through real-time computation of robot's dynamics. Our experiments on the RAVEN II robot demonstrate that this framework can detect and mitigate the malicious commands before they manifest in the physical system with an average accuracy of 90%.","PeriodicalId":102292,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2016.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

This paper demonstrates targeted cyber-physical attacks on teleoperated surgical robots. These attacks exploit vulnerabilities in the robot's control system to infer a critical time during surgery to drive injection of malicious control commands to the robot. We show that these attacks can evade the safety checks of the robot, lead to catastrophic consequences in the physical system (e.g., sudden jumps of robotic arms or system's transition to an unwanted halt state), and cause patient injury, robot damage, or system unavailability in the middle of a surgery. We present a model-based analysis framework that can estimate the consequences of control commands through real-time computation of robot's dynamics. Our experiments on the RAVEN II robot demonstrate that this framework can detect and mitigate the malicious commands before they manifest in the physical system with an average accuracy of 90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远程手术机器人的目标攻击:基于动态模型的检测和缓解
本文演示了针对远程手术机器人的针对性网络物理攻击。这些攻击利用机器人控制系统中的漏洞来推断手术期间的关键时间,从而驱动向机器人注入恶意控制命令。我们表明,这些攻击可以逃避机器人的安全检查,导致物理系统的灾难性后果(例如,机器人手臂的突然跳跃或系统过渡到不想要的半状态),并导致患者受伤,机器人损坏或系统在手术过程中不可用。我们提出了一个基于模型的分析框架,可以通过实时计算机器人的动力学来估计控制命令的后果。我们在RAVEN II机器人上的实验表明,该框架可以在恶意命令在物理系统中显现之前检测并减轻它们,平均准确率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ELZAR: Triple Modular Redundancy Using Intel AVX (Practical Experience Report) DomainProfiler: Discovering Domain Names Abused in Future OSIRIS: Efficient and Consistent Recovery of Compartmentalized Operating Systems HSFI: Accurate Fault Injection Scalable to Large Code Bases Secure and Efficient Multi-Variant Execution Using Hardware-Assisted Process Virtualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1