Feature selection for ensembles:a hierarchical multi-objective genetic algorithm approach

Luiz Oliveira, R. Sabourin, Flávio Bortolozzi, C. Suen
{"title":"Feature selection for ensembles:a hierarchical multi-objective genetic algorithm approach","authors":"Luiz Oliveira, R. Sabourin, Flávio Bortolozzi, C. Suen","doi":"10.1109/ICDAR.2003.1227748","DOIUrl":null,"url":null,"abstract":"Feature selection for ensembles has shown to be an effectivestrategy for ensemble creation. In this paper we presentan ensemble feature selection approach based on a hierarchicalmulti-objective genetic algorithm. The first level performsfeature selection in order to generate a set of goodclassifiers while the second one combines them to providea set of powerful ensembles. The proposed method is evaluatedin the context of handwritten digit recognition, usingthree different feature sets and neural networks (MLP) asclassifiers. Experiments conducted on NIST SD19 demonstratedthe effectiveness of the proposed strategy.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Feature selection for ensembles has shown to be an effectivestrategy for ensemble creation. In this paper we presentan ensemble feature selection approach based on a hierarchicalmulti-objective genetic algorithm. The first level performsfeature selection in order to generate a set of goodclassifiers while the second one combines them to providea set of powerful ensembles. The proposed method is evaluatedin the context of handwritten digit recognition, usingthree different feature sets and neural networks (MLP) asclassifiers. Experiments conducted on NIST SD19 demonstratedthe effectiveness of the proposed strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成的特征选择:一种分层多目标遗传算法方法
集成的特征选择已被证明是集成创建的一种有效策略。本文提出了一种基于层次多目标遗传算法的集成特征选择方法。第一级执行特征选择以生成一组好的分类器,而第二级将它们组合起来以提供一组强大的集成。在手写体数字识别的背景下,使用三种不同的特征集和神经网络(MLP)作为分类器对所提出的方法进行了评估。在NIST SD19上进行的实验证明了所提出策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1