{"title":"ghostwriter19 @ ATE_ABSITA: Zero-Shot and ONNX to Speed up BERT on Sentiment Analysis Tasks at EVALITA 2020 (short paper)","authors":"Mauro Bennici","doi":"10.4000/BOOKS.AACCADEMIA.6889","DOIUrl":null,"url":null,"abstract":"English. With the arrival of BERT 2 in 2018, NLP research has taken a significant step forward. However, the necessary computing power has grown accordingly. Various distillation and optimization systems have been adopted but are costly in terms of cost-benefit ratio. The most important improvements are obtained by creating increasingly complex models with more layers and parameters. In this research, we will see how, by mixing transfer learning, zero-shot learning, and ONNX runtime, we can access the power of BERT right now, optimizing time and resources, achieving noticeable results on day one. Italiano. Con l'arrivo di BERT nel 2018, la ricerca nel campo dell'NLP ha fatto un notevole passo in avanti. La potenza di calcolo necessaria però è cresciuta di conseguenza. Diversi sistemi di distillazione e di ottimizzazione sono stati adottati ma risultano onerosi in termini di rapporto costo benefici. I vantaggi di maggior rilievo si ottengono creando modelli sempre più complessi con un maggior numero di layers e di parametri. In questa ricerca vedremo come mixando transfer learning, zero-shot learning e ONNX runtime si può accedere alla potenza di BERT da subito, ottimizzando tempo e risorse, raggiungendo risultati apprezzabili al day one. 1 Copyright ©️2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Zero-Shot和ONNX将加速BERT在EVALITA 2020上的情感分析任务(短论文)
English。随着伯特2号的到来,NLP的研究已经向前迈出了重要的一步。必要的计算能力已经达成一致。不同的蒸馏和优化系统已经被采用,但成本效益比率越来越高。最重要的改进是用更多的layers和参数创造出更复杂的模型。在这项研究中,我们将看到如何,通过混合学习,零点学习,和一次运行时间,我们现在可以获得伯特的力量,更好的时间和资源,在一天内获得可交付的结果。意大利。伯特于2018年抵达,nlp领域的研究取得了重大进展。然而,所需的计算能力因此而增加。采用了各种蒸馏和优化系统,但成本效益高。最大的好处是创建了越来越复杂的模型,拥有更多的玩家和参数。在这个搜索中,我们将看到如何混合传输学习,zero shot学习和ONNX runtime从现在开始访问BERT的能力,优化时间和资源,在第一天取得显著的结果。1版权所有©️2020 for this paper by its authors。使用知识共享许可归属4.0国际(CC BY 4.0)
本文章由计算机程序翻译,如有差异,请以英文原文为准。