ghostwriter19 @ ATE_ABSITA: Zero-Shot and ONNX to Speed up BERT on Sentiment Analysis Tasks at EVALITA 2020 (short paper)

Mauro Bennici
{"title":"ghostwriter19 @ ATE_ABSITA: Zero-Shot and ONNX to Speed up BERT on Sentiment Analysis Tasks at EVALITA 2020 (short paper)","authors":"Mauro Bennici","doi":"10.4000/BOOKS.AACCADEMIA.6889","DOIUrl":null,"url":null,"abstract":"English. With the arrival of BERT 2 in 2018, NLP research has taken a significant step forward. However, the necessary computing power has grown accordingly. Various distillation and optimization systems have been adopted but are costly in terms of cost-benefit ratio. The most important improvements are obtained by creating increasingly complex models with more layers and parameters. In this research, we will see how, by mixing transfer learning, zero-shot learning, and ONNX runtime, we can access the power of BERT right now, optimizing time and resources, achieving noticeable results on day one. Italiano. Con l'arrivo di BERT nel 2018, la ricerca nel campo dell'NLP ha fatto un notevole passo in avanti. La potenza di calcolo necessaria però è cresciuta di conseguenza. Diversi sistemi di distillazione e di ottimizzazione sono stati adottati ma risultano onerosi in termini di rapporto costo benefici. I vantaggi di maggior rilievo si ottengono creando modelli sempre più complessi con un maggior numero di layers e di parametri. In questa ricerca vedremo come mixando transfer learning, zero-shot learning e ONNX runtime si può accedere alla potenza di BERT da subito, ottimizzando tempo e risorse, raggiungendo risultati apprezzabili al day one. 1 Copyright ©️2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

English. With the arrival of BERT 2 in 2018, NLP research has taken a significant step forward. However, the necessary computing power has grown accordingly. Various distillation and optimization systems have been adopted but are costly in terms of cost-benefit ratio. The most important improvements are obtained by creating increasingly complex models with more layers and parameters. In this research, we will see how, by mixing transfer learning, zero-shot learning, and ONNX runtime, we can access the power of BERT right now, optimizing time and resources, achieving noticeable results on day one. Italiano. Con l'arrivo di BERT nel 2018, la ricerca nel campo dell'NLP ha fatto un notevole passo in avanti. La potenza di calcolo necessaria però è cresciuta di conseguenza. Diversi sistemi di distillazione e di ottimizzazione sono stati adottati ma risultano onerosi in termini di rapporto costo benefici. I vantaggi di maggior rilievo si ottengono creando modelli sempre più complessi con un maggior numero di layers e di parametri. In questa ricerca vedremo come mixando transfer learning, zero-shot learning e ONNX runtime si può accedere alla potenza di BERT da subito, ottimizzando tempo e risorse, raggiungendo risultati apprezzabili al day one. 1 Copyright ©️2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero-Shot和ONNX将加速BERT在EVALITA 2020上的情感分析任务(短论文)
English。随着伯特2号的到来,NLP的研究已经向前迈出了重要的一步。必要的计算能力已经达成一致。不同的蒸馏和优化系统已经被采用,但成本效益比率越来越高。最重要的改进是用更多的layers和参数创造出更复杂的模型。在这项研究中,我们将看到如何,通过混合学习,零点学习,和一次运行时间,我们现在可以获得伯特的力量,更好的时间和资源,在一天内获得可交付的结果。意大利。伯特于2018年抵达,nlp领域的研究取得了重大进展。然而,所需的计算能力因此而增加。采用了各种蒸馏和优化系统,但成本效益高。最大的好处是创建了越来越复杂的模型,拥有更多的玩家和参数。在这个搜索中,我们将看到如何混合传输学习,zero shot学习和ONNX runtime从现在开始访问BERT的能力,优化时间和资源,在第一天取得显著的结果。1版权所有©️2020 for this paper by its authors。使用知识共享许可归属4.0国际(CC BY 4.0)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1