Spatiotemporal Quantification of In Vitro Cardiomyocyte Contraction Dynamics Using Video Microscopy-based Software Tool

A. Ahola, J. Hyttinen
{"title":"Spatiotemporal Quantification of In Vitro Cardiomyocyte Contraction Dynamics Using Video Microscopy-based Software Tool","authors":"A. Ahola, J. Hyttinen","doi":"10.23919/cinc53138.2021.9662652","DOIUrl":null,"url":null,"abstract":"Stem cell derived cardiomyocytes provide a platform for a variety of studies. The typically performed electrophysiological measurements do not describe the primary function of these cells, contraction and its biomechanics. Video microscopy-based analysis of motion has become a feasible option for these studies. Here, we demonstrate methods for spatiotemporal quantification of stem cell derived cardiomyocytes, implemented in an in-house developed MATLAB-based software tool. The tool is capable of characterizing cardiomyocyte contraction with minimal user bias. The results show that automatic segmentation using a power spectral density -based measure enables segmentation based on contractile function. Further, based on segmented boundaries, we introduce automatically calculated parameters for quantification the contractile function and its propagation through the cell culture based on timings of different contraction phases. The methods presented here form a basis for quantifying and understanding the contraction dynamics and the propagation of contraction in cultures involving cardiomyocytes.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell derived cardiomyocytes provide a platform for a variety of studies. The typically performed electrophysiological measurements do not describe the primary function of these cells, contraction and its biomechanics. Video microscopy-based analysis of motion has become a feasible option for these studies. Here, we demonstrate methods for spatiotemporal quantification of stem cell derived cardiomyocytes, implemented in an in-house developed MATLAB-based software tool. The tool is capable of characterizing cardiomyocyte contraction with minimal user bias. The results show that automatic segmentation using a power spectral density -based measure enables segmentation based on contractile function. Further, based on segmented boundaries, we introduce automatically calculated parameters for quantification the contractile function and its propagation through the cell culture based on timings of different contraction phases. The methods presented here form a basis for quantifying and understanding the contraction dynamics and the propagation of contraction in cultures involving cardiomyocytes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于视频显微镜的软件工具对体外心肌细胞收缩动力学进行时空量化
干细胞衍生的心肌细胞为各种研究提供了一个平台。通常进行的电生理测量不能描述这些细胞的主要功能、收缩及其生物力学。基于视频显微镜的运动分析已经成为这些研究的可行选择。在这里,我们展示了干细胞来源的心肌细胞的时空量化方法,在内部开发的基于matlab的软件工具中实现。该工具能够以最小的用户偏差表征心肌细胞收缩。结果表明,基于功率谱密度的自动分割能够实现基于收缩函数的分割。此外,在分割边界的基础上,我们引入了自动计算的参数来量化收缩功能,并根据不同收缩阶段的时间在细胞培养中传播。本文提出的方法为量化和理解心肌细胞在培养过程中的收缩动力学和收缩增殖奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1