An Image Matching Algorithm Based on SIFT and Improved LTP

Yi-Ming Liu, Lifang Chen, Yuan Liu, Hao-Tian Wu
{"title":"An Image Matching Algorithm Based on SIFT and Improved LTP","authors":"Yi-Ming Liu, Lifang Chen, Yuan Liu, Hao-Tian Wu","doi":"10.1109/CIS.2013.98","DOIUrl":null,"url":null,"abstract":"SIFT is one of the most robust and widely used image matching algorithms based on local features. But the key-points descriptor of SIFT algorithm have 128 dimensions. Aiming to the problem of its high dimension and complexity, a novel image matching algorithm is proposed. The descriptors of SIFT key-points are constructed by the rotation invariant LTP, city-block distance is also employed to reduce calculation of key-points matching. The experiment is achieved through different lighting, blur changes and rotation of images, the results show that this method can reduce the processing time and raise image matching efficiency.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

SIFT is one of the most robust and widely used image matching algorithms based on local features. But the key-points descriptor of SIFT algorithm have 128 dimensions. Aiming to the problem of its high dimension and complexity, a novel image matching algorithm is proposed. The descriptors of SIFT key-points are constructed by the rotation invariant LTP, city-block distance is also employed to reduce calculation of key-points matching. The experiment is achieved through different lighting, blur changes and rotation of images, the results show that this method can reduce the processing time and raise image matching efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SIFT和改进LTP的图像匹配算法
SIFT是一种鲁棒性最好、应用最广泛的基于局部特征的图像匹配算法。而SIFT算法的关键点描述符有128维。针对图像匹配的高维数和复杂度问题,提出了一种新的图像匹配算法。SIFT的关键点描述符由旋转不变量LTP构造,并采用城市街区距离来减少关键点匹配的计算。实验通过不同的光照、模糊变化和图像旋转来实现,结果表明该方法可以减少处理时间,提高图像匹配效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-op Advertising Analysis within a Supply Chain Based on the Three-Stage Non-cooperate Dynamic Game Model Study on Pseudorandomness of Some Pseudorandom Number Generators with Application The Superiority Analysis of Linear Frequency Modulation and Barker Code Composite Radar Signal The Improvement of the Commonly Used Linear Polynomial Selection Methods A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1