{"title":"Construction of metadata database structured by conceptual elements of text structure and semantic search evaluation of Korean studies","authors":"Y. Ko, Minsun Song, Seung-Jun Lee","doi":"10.1108/EL-03-2021-0055","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to develop metadata of conceptual elements based on the text structure of research articles on Korean studies, to propose a search algorithm that reflects the combination of semantically relevant data in accordance with the search intention of research paper and to examine the algorithm whether there is a difference in the intention-based search results.\n\n\nDesign/methodology/approach\nThis study constructed a metadata database of 5,007 research articles on Korean studies arranged by conceptual elements of text structure and developed F1(w)-score weighted to conceptual elements based on the F1-score and the number of data points from each element. This study evaluated the algorithm by comparing search results of the F1(w)-score algorithm with those of the Term Frequency- Inverse Document Frequency (TF-IDF) algorithm and simple keyword search.\n\n\nFindings\nThe authors find that the higher the F1(w)-score, the closer the semantic relevance of search intention. Furthermore, F1(w)-score generated search results were more closely related to the search intention than those of TF-IDF and simple keyword search.\n\n\nResearch limitations/implications\nEven though the F1(w)-score was developed in this study to evaluate the search results of metadata database structured by conceptual elements of text structure of Korean studies, the algorithm can be used as a tool for searching the database which is a tuning process of weighting required.\n\n\nPractical implications\nA metadata database based on text structure and a search method based on weights of metadata elements – F1(w)-score – can be useful for interdisciplinary studies, especially for semantic search in regional studies.\n\n\nOriginality/value\nThis paper presents a methodology for supporting IR using F1(w)-score—a novel model for weighting metadata elements based on text structure. The F1(w)-score-based search results show the combination of semantically relevant data, which are otherwise difficult to search for using similarity of search words.\n","PeriodicalId":330882,"journal":{"name":"Electron. Libr.","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Libr.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/EL-03-2021-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to develop metadata of conceptual elements based on the text structure of research articles on Korean studies, to propose a search algorithm that reflects the combination of semantically relevant data in accordance with the search intention of research paper and to examine the algorithm whether there is a difference in the intention-based search results.
Design/methodology/approach
This study constructed a metadata database of 5,007 research articles on Korean studies arranged by conceptual elements of text structure and developed F1(w)-score weighted to conceptual elements based on the F1-score and the number of data points from each element. This study evaluated the algorithm by comparing search results of the F1(w)-score algorithm with those of the Term Frequency- Inverse Document Frequency (TF-IDF) algorithm and simple keyword search.
Findings
The authors find that the higher the F1(w)-score, the closer the semantic relevance of search intention. Furthermore, F1(w)-score generated search results were more closely related to the search intention than those of TF-IDF and simple keyword search.
Research limitations/implications
Even though the F1(w)-score was developed in this study to evaluate the search results of metadata database structured by conceptual elements of text structure of Korean studies, the algorithm can be used as a tool for searching the database which is a tuning process of weighting required.
Practical implications
A metadata database based on text structure and a search method based on weights of metadata elements – F1(w)-score – can be useful for interdisciplinary studies, especially for semantic search in regional studies.
Originality/value
This paper presents a methodology for supporting IR using F1(w)-score—a novel model for weighting metadata elements based on text structure. The F1(w)-score-based search results show the combination of semantically relevant data, which are otherwise difficult to search for using similarity of search words.