Ocular Artifact Minimization by Adaptive Filtering

W. Du, H. Leong, A. Gevins
{"title":"Ocular Artifact Minimization by Adaptive Filtering","authors":"W. Du, H. Leong, A. Gevins","doi":"10.1109/SSAP.1994.572536","DOIUrl":null,"url":null,"abstract":"The problem of real-time ocular or eye artifact correction is addressed in this paper based on the framework of the general adaptive interference canceler, wherein the EOG signals are used as the reference signal. Adaptive algorithms such as LMS, recursive LS, or exponentially weighted LS can be used to update the coefficients of the adaptive filter. The major problem associated with an adaptive eye artifact canceler is found to be the unwanted correlations between the desired and reference signals. This is especially problematic when slow cognitive potentials or slow head or body movement artifacts coexist with eye artifacts in the recorded EEG. Undesired correlations can result in over-correction of ocular artifacts if a standard adaptive filter is used. We tackle this problem by taking into account a priori information regarding the ocular artifacts, that is, the spatietemporal statistics of the transmission coefficients. This strategy yields an adaptive artifact canceler combined with leakage and signal subspace enhancement.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The problem of real-time ocular or eye artifact correction is addressed in this paper based on the framework of the general adaptive interference canceler, wherein the EOG signals are used as the reference signal. Adaptive algorithms such as LMS, recursive LS, or exponentially weighted LS can be used to update the coefficients of the adaptive filter. The major problem associated with an adaptive eye artifact canceler is found to be the unwanted correlations between the desired and reference signals. This is especially problematic when slow cognitive potentials or slow head or body movement artifacts coexist with eye artifacts in the recorded EEG. Undesired correlations can result in over-correction of ocular artifacts if a standard adaptive filter is used. We tackle this problem by taking into account a priori information regarding the ocular artifacts, that is, the spatietemporal statistics of the transmission coefficients. This strategy yields an adaptive artifact canceler combined with leakage and signal subspace enhancement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应滤波的眼伪影最小化算法
本文基于通用自适应干扰消除器的框架,以眼电信号为参考信号,解决了实时眼或眼伪影校正问题。自适应算法,如LMS、递归LS或指数加权LS,可用于更新自适应滤波器的系数。与自适应眼伪影消除器相关的主要问题是期望信号和参考信号之间存在不必要的相关性。在记录的脑电图中,当缓慢的认知电位或缓慢的头部或身体运动伪影与眼睛伪影共存时,这尤其有问题。如果使用标准的自适应滤波器,不期望的相关性会导致眼部伪影的过度校正。我们通过考虑关于眼伪影的先验信息,即透射系数的时空统计来解决这个问题。该策略结合了泄漏和信号子空间增强,产生了自适应伪影消除器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1