{"title":"View-independent human action recognition based on multi-view action images and discriminant learning","authors":"Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/IVMSPW.2013.6611931","DOIUrl":null,"url":null,"abstract":"In this paper a novel view-independent human action recognition method is proposed. A multi-camera setup is used to capture the human body from different viewing angles. Actions are described by a novel action representation, the so-called multi-view action image (MVAI), which effectively addresses the camera viewpoint identification problem, i.e., the identification of the position of each camera with respect to the person's body. Linear Discriminant Analysis is applied on the MVAIs in order to to map actions to a discriminant feature space where actions are classified by using a simple nearest class centroid classification scheme. Experimental results denote the effectiveness of the proposed action recognition approach.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper a novel view-independent human action recognition method is proposed. A multi-camera setup is used to capture the human body from different viewing angles. Actions are described by a novel action representation, the so-called multi-view action image (MVAI), which effectively addresses the camera viewpoint identification problem, i.e., the identification of the position of each camera with respect to the person's body. Linear Discriminant Analysis is applied on the MVAIs in order to to map actions to a discriminant feature space where actions are classified by using a simple nearest class centroid classification scheme. Experimental results denote the effectiveness of the proposed action recognition approach.