Investigating the Impact of Experience on a User's Ability to Perform Hierarchical Abstraction

Nina Moorman, N. Gopalan, Aman Singh, Erin Botti, Mariah L. Schrum, Chuxuan Yang, Lakshmi Seelam, M. Gombolay
{"title":"Investigating the Impact of Experience on a User's Ability to Perform Hierarchical Abstraction","authors":"Nina Moorman, N. Gopalan, Aman Singh, Erin Botti, Mariah L. Schrum, Chuxuan Yang, Lakshmi Seelam, M. Gombolay","doi":"10.15607/RSS.2023.XIX.004","DOIUrl":null,"url":null,"abstract":"The field of Learning from Demonstration enables end-users, who are not robotics experts, to shape robot behavior. However, using human demonstrations to teach robots to solve long-horizon problems by leveraging the hierarchical structure of the task is still an unsolved problem. Prior work has yet to show that human users can provide sufficient demonstrations in novel domains without showing the demonstrators explicit teaching strategies for each domain. In this work, we investigate whether non-expert demonstrators can generalize robot teaching strategies to provide necessary and sufficient demonstrations to robots zero-shot in novel domains. We find that increasing participant experience with providing demonstrations improves their demonstration’s degree of sub-task abstraction (p < .001), teaching efficiency (p < .001), and sub-task redundancy (p < .05) in novel domains, allowing generalization in robot teaching. Our findings demonstrate for the first time that non-expert demonstrators can transfer knowledge from a series of training experiences to novel domains without the need for explicit instruction, such that they can provide necessary and sufficient demonstrations when programming robots to complete task and motion planning problems.","PeriodicalId":248720,"journal":{"name":"Robotics: Science and Systems XIX","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2023.XIX.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of Learning from Demonstration enables end-users, who are not robotics experts, to shape robot behavior. However, using human demonstrations to teach robots to solve long-horizon problems by leveraging the hierarchical structure of the task is still an unsolved problem. Prior work has yet to show that human users can provide sufficient demonstrations in novel domains without showing the demonstrators explicit teaching strategies for each domain. In this work, we investigate whether non-expert demonstrators can generalize robot teaching strategies to provide necessary and sufficient demonstrations to robots zero-shot in novel domains. We find that increasing participant experience with providing demonstrations improves their demonstration’s degree of sub-task abstraction (p < .001), teaching efficiency (p < .001), and sub-task redundancy (p < .05) in novel domains, allowing generalization in robot teaching. Our findings demonstrate for the first time that non-expert demonstrators can transfer knowledge from a series of training experiences to novel domains without the need for explicit instruction, such that they can provide necessary and sufficient demonstrations when programming robots to complete task and motion planning problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查体验对用户执行层次抽象能力的影响
从演示中学习的领域使最终用户(不是机器人专家)能够塑造机器人的行为。然而,利用人类示范来教机器人利用任务的层次结构来解决长期问题仍然是一个未解决的问题。先前的工作尚未表明人类用户可以在新领域提供足够的演示,而无需向演示者展示每个领域的明确教学策略。在这项工作中,我们研究了非专家演示是否可以推广机器人教学策略,为机器人零射击在新领域提供必要和充分的演示。我们发现,通过提供演示来增加参与者的经验,可以提高他们在新领域的演示子任务抽象程度(p < 0.001)、教学效率(p < 0.001)和子任务冗余(p < 0.05),从而实现机器人教学的泛化。我们的研究结果首次证明,非专业演示人员可以在不需要明确指导的情况下将知识从一系列训练经验转移到新的领域,这样他们就可以在编程机器人完成任务和运动规划问题时提供必要和充分的演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sampling-Based Approach for Heterogeneous Coalition Scheduling with Temporal Uncertainty ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects ERASOR2: Instance-Aware Robust 3D Mapping of the Static World in Dynamic Scenes Autonomous Navigation, Mapping and Exploration with Gaussian Processes Predefined-Time Convergent Motion Control for Heterogeneous Continuum Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1