Declarative cartography: In-database map generalization of geospatial datasets

Pimin Konstantin Kefaloukos, M. V. Salles, Martin Zachariasen
{"title":"Declarative cartography: In-database map generalization of geospatial datasets","authors":"Pimin Konstantin Kefaloukos, M. V. Salles, Martin Zachariasen","doi":"10.1109/ICDE.2014.6816720","DOIUrl":null,"url":null,"abstract":"Creating good maps is the challenge of map generalization. An important generalization method is selecting subsets of the data to be shown at different zoom-levels of a zoomable map, subject to a set of spatial constraints. Applying these constraints serves the dual purpose of increasing the information quality of the map and improving the performance of data transfer and rendering. Unfortunately, with current tools, users must explicitly specify which objects to show at each zoom level of their map, while keeping their application constraints implicit. This paper introduces a novel declarative approach to map generalization based on a language called CVL, the Cartographic Visualization Language. In contrast to current tools, users declare application constraints and object importance in CVL, while leaving the selection of objects implicit. In order to compute an explicit selection of objects, CVL scripts are translated into an algorithmic search task. We show how this translation allows for reuse of existing algorithms from the optimization literature, while at the same time supporting fully pluggable, user-defined constraints and object weight functions. In addition, we show how to evaluate CVL entirely inside a relational database. The latter allows users to seamlessly integrate storage of geospatial data with its transformation into map visualizations. In a set of experiments with a variety of real-world data sets, we find that CVL produces generalizations in reasonable time for off-line processing; furthermore, the quality of the generalizations is high with respect to the chosen objective function.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Creating good maps is the challenge of map generalization. An important generalization method is selecting subsets of the data to be shown at different zoom-levels of a zoomable map, subject to a set of spatial constraints. Applying these constraints serves the dual purpose of increasing the information quality of the map and improving the performance of data transfer and rendering. Unfortunately, with current tools, users must explicitly specify which objects to show at each zoom level of their map, while keeping their application constraints implicit. This paper introduces a novel declarative approach to map generalization based on a language called CVL, the Cartographic Visualization Language. In contrast to current tools, users declare application constraints and object importance in CVL, while leaving the selection of objects implicit. In order to compute an explicit selection of objects, CVL scripts are translated into an algorithmic search task. We show how this translation allows for reuse of existing algorithms from the optimization literature, while at the same time supporting fully pluggable, user-defined constraints and object weight functions. In addition, we show how to evaluate CVL entirely inside a relational database. The latter allows users to seamlessly integrate storage of geospatial data with its transformation into map visualizations. In a set of experiments with a variety of real-world data sets, we find that CVL produces generalizations in reasonable time for off-line processing; furthermore, the quality of the generalizations is high with respect to the chosen objective function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声明式制图:地理空间数据集的数据库内地图综合
制作好的地图是地图泛化的挑战。一个重要的泛化方法是选择数据子集,在可缩放地图的不同缩放级别上显示,受一组空间约束。应用这些约束可以达到提高地图信息质量和改进数据传输和呈现性能的双重目的。不幸的是,使用当前的工具,用户必须显式地指定在地图的每个缩放级别上显示哪些对象,同时保持应用程序约束的隐式。本文介绍了一种基于CVL语言(制图可视化语言)的新型地图综合描述方法。与当前的工具相比,用户在CVL中声明应用程序约束和对象重要性,同时隐式地保留对象的选择。为了计算对象的显式选择,CVL脚本被转换为算法搜索任务。我们展示了这种转换如何允许重用优化文献中的现有算法,同时支持完全可插拔的、用户定义的约束和对象权重函数。此外,我们还展示了如何在关系数据库中完全评估CVL。后者允许用户将地理空间数据的存储与其转换为地图可视化无缝集成。在一组具有各种现实世界数据集的实验中,我们发现CVL在离线处理的合理时间内产生泛化;此外,相对于所选择的目标函数,泛化的质量很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing uncertainty in spatial and spatio-temporal data Locality-sensitive operators for parallel main-memory database clusters KnowLife: A knowledge graph for health and life sciences We can learn your #hashtags: Connecting tweets to explicit topics A demonstration of MNTG - A web-based road network traffic generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1