Abdullah Al Shiam, M. Islam, Toshihisa Tanaka, M. I. Molla
{"title":"Electroencephalography Based Motor Imagery Classification Using Unsupervised Feature Selection","authors":"Abdullah Al Shiam, M. Islam, Toshihisa Tanaka, M. I. Molla","doi":"10.1109/CW.2019.00047","DOIUrl":null,"url":null,"abstract":"The major challenge in Brain Computer Interface (BCI) is to obtain reliable classification accuracy of motor imagery (MI) task. This paper mainly focuses on unsupervised feature selection for electroencephalography (EEG) classification leading to BCI implementation. The multichannel EEG signal is decomposed into a number of subband signals. The features are extracted from each subband by applying spatial filtering technique. The features are combined into a common feature space to represent the effective event MI classification. It may inevitably include some irrelevant features yielding the increase of dimension and mislead the classification system. The unsupervised discriminative feature selection (UDFS) is employed here to select the subset of extracted features. It effectively selects the dominant features to improve classification accuracy of motor imagery task acquired by EEG signals. The classification of MI tasks is performed by support vector machine. The performance of the proposed method is evaluated using publicly available dataset obtained from BCI Competition III (IVA). The experimental results show that the performance of this method is better than that of the recently developed algorithms.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The major challenge in Brain Computer Interface (BCI) is to obtain reliable classification accuracy of motor imagery (MI) task. This paper mainly focuses on unsupervised feature selection for electroencephalography (EEG) classification leading to BCI implementation. The multichannel EEG signal is decomposed into a number of subband signals. The features are extracted from each subband by applying spatial filtering technique. The features are combined into a common feature space to represent the effective event MI classification. It may inevitably include some irrelevant features yielding the increase of dimension and mislead the classification system. The unsupervised discriminative feature selection (UDFS) is employed here to select the subset of extracted features. It effectively selects the dominant features to improve classification accuracy of motor imagery task acquired by EEG signals. The classification of MI tasks is performed by support vector machine. The performance of the proposed method is evaluated using publicly available dataset obtained from BCI Competition III (IVA). The experimental results show that the performance of this method is better than that of the recently developed algorithms.