{"title":"An Experimental Investigation into the Residual Bond of NSM Composite Strips for Concrete at Elevated Temperatures","authors":"A. R. Namrou, Y. J. Kim","doi":"10.14359/51687089","DOIUrl":null,"url":null,"abstract":"This paper presents an initial experimental result concerning the behavior of near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) strips embedded in a concrete substrate at elevated temperatures. Thermal stresses varying from 25°C [77°F] to 200°C [392°F] are applied for three hours. The experimental program is comprised of 48 CFRP-concrete specimens bonded with an ordinary or high-temperature epoxy adhesive and their comparative performance is of interest in the present investigation. Emphasis is placed on the residual capacity of the conditioned NSM CFRP-concrete interface and corresponding failure mode. Test results show that the interfacial strength of the specimens bonded with the ordinary epoxy is maintained until 75°C [167°F] is reached, while the strength noticeably decreases with an increasing temperature above this limit. The specimens with the high temperature epoxy preserve interfacial capacity up to 200°C [392°F] despite a trend of strength-decrease being observed. The failure of the test specimens is brittle irrespective of adhesive type. Interfacial damage is localized along the bond-line with the presence of hairline cracks that further develop when interfacial failure is imminent.","PeriodicalId":191674,"journal":{"name":"\"SP-298: Advanced Materials and Sensors Towards Smart Concrete Bridges: Concept, Performance, Evaluation, and Repair\"","volume":"73 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"\"SP-298: Advanced Materials and Sensors Towards Smart Concrete Bridges: Concept, Performance, Evaluation, and Repair\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/51687089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an initial experimental result concerning the behavior of near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) strips embedded in a concrete substrate at elevated temperatures. Thermal stresses varying from 25°C [77°F] to 200°C [392°F] are applied for three hours. The experimental program is comprised of 48 CFRP-concrete specimens bonded with an ordinary or high-temperature epoxy adhesive and their comparative performance is of interest in the present investigation. Emphasis is placed on the residual capacity of the conditioned NSM CFRP-concrete interface and corresponding failure mode. Test results show that the interfacial strength of the specimens bonded with the ordinary epoxy is maintained until 75°C [167°F] is reached, while the strength noticeably decreases with an increasing temperature above this limit. The specimens with the high temperature epoxy preserve interfacial capacity up to 200°C [392°F] despite a trend of strength-decrease being observed. The failure of the test specimens is brittle irrespective of adhesive type. Interfacial damage is localized along the bond-line with the presence of hairline cracks that further develop when interfacial failure is imminent.