Antonis Papadimitriou, Mingchen Zhao, Andreas Haeberlen
{"title":"Towards privacy-preserving fault detection","authors":"Antonis Papadimitriou, Mingchen Zhao, Andreas Haeberlen","doi":"10.1145/2524224.2524233","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the problem of detecting general faults in distributed systems that handle confidential information. Detecting non-crash faults is difficult in this setting because, to check the behavior of a given node, we need to know its expected behavior -- but that can depend on the confidential information. Classical zero-knowledge proofs are difficult to apply because they are designed to verify functions with a fixed number of inputs, but in many distributed systems, both the size and the number of a node's \"inputs\" (the messages it has received from other nodes) are not known. We propose an approach that can efficiently provide zero-knowledge fault detection for certain systems. Our approach spreads the detection tasks across multiple nodes, leveraging a node's existing knowledge whenever possible. We use epistemic reasoning to infer such knowledge, and we combine classical zero-knowledge proofs with a special data structure to handle inputs of unknown size. We show how our approach can be applied to a simple example system, and we report some initial performance measurements.","PeriodicalId":436314,"journal":{"name":"Proceedings of the 9th Workshop on Hot Topics in Dependable Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Workshop on Hot Topics in Dependable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2524224.2524233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we discuss the problem of detecting general faults in distributed systems that handle confidential information. Detecting non-crash faults is difficult in this setting because, to check the behavior of a given node, we need to know its expected behavior -- but that can depend on the confidential information. Classical zero-knowledge proofs are difficult to apply because they are designed to verify functions with a fixed number of inputs, but in many distributed systems, both the size and the number of a node's "inputs" (the messages it has received from other nodes) are not known. We propose an approach that can efficiently provide zero-knowledge fault detection for certain systems. Our approach spreads the detection tasks across multiple nodes, leveraging a node's existing knowledge whenever possible. We use epistemic reasoning to infer such knowledge, and we combine classical zero-knowledge proofs with a special data structure to handle inputs of unknown size. We show how our approach can be applied to a simple example system, and we report some initial performance measurements.