Prediction of Multi-class Industrial Data

J. Platoš, P. Krömer
{"title":"Prediction of Multi-class Industrial Data","authors":"J. Platoš, P. Krömer","doi":"10.1109/INCoS.2013.20","DOIUrl":null,"url":null,"abstract":"Industrial plants use many different sensors for processes monitoring and controlling. These sensors generate huge amount of data. These data should be used for improving of the quality of semi and final products in each factory. In this paper, we describe processing of two different datasets acquired from a steel-mill factory using three different methods SVM, Fuzzy Rules and Bayesian classification. Moreover, we describe problems of each method with confrontation with real data. Each of the method used works in different algorithm and is not based on the same theory. Their comparison gives a nice review of the real application of these methods.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2013.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Industrial plants use many different sensors for processes monitoring and controlling. These sensors generate huge amount of data. These data should be used for improving of the quality of semi and final products in each factory. In this paper, we describe processing of two different datasets acquired from a steel-mill factory using three different methods SVM, Fuzzy Rules and Bayesian classification. Moreover, we describe problems of each method with confrontation with real data. Each of the method used works in different algorithm and is not based on the same theory. Their comparison gives a nice review of the real application of these methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类工业数据的预测
工业工厂使用许多不同的传感器来监测和控制过程。这些传感器产生大量的数据。这些数据将用于提高各工厂的半成品和成品的质量。在本文中,我们描述了使用三种不同的方法SVM,模糊规则和贝叶斯分类处理从钢铁厂获得的两个不同的数据集。此外,通过与实际数据的对比,描述了每种方法存在的问题。所使用的每种方法都以不同的算法工作,并且不是基于相同的理论。他们的比较很好地回顾了这些方法的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Efficient Priority-and-Activity-Based QoS MAC Protocol Impact of Channel Estimation Error on Time Division Broadcast Protocol in Bidirectional Relaying Systems RLWE-Based Homomorphic Encryption and Private Information Retrieval A Spatially Varying Mean and Variance Active Contour Model A Secure Cloud Storage System from Threshold Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1