{"title":"Online Power Estimation of Graphics Processing Units","authors":"Vignesh Adhinarayanan, Balaji Subramaniam, Wu-chun Feng","doi":"10.1109/CCGrid.2016.93","DOIUrl":null,"url":null,"abstract":"Accurate power estimation at runtime is essential for the efficient functioning of a power management system. While years of research have yielded accurate power models for the online prediction of instantaneous power for CPUs, such power models for graphics processing units (GPUs) are lacking. GPUs rely on low-resolution power meters that only nominally support basic power management. To address this, we propose an instantaneous power model, and in turn, a power estimator, that uses performance counters in a novel way so as to deliver accurate power estimation at runtime. Our power estimator runs on two real NVIDIA GPUs to show that accurate runtime estimation is possible without the need for the high-fidelity details that are assumed on simulation-based power models. To construct our power model, we first use correlation analysis to identify a concise set of performance counters that work well despite GPU device limitations. Next, we explore several statistical regression techniques and identify the best one. Then, to improve the prediction accuracy, we propose a novel application-dependent modeling technique, where the model is constructed online at runtime, based on the readings from a low-resolution, built-in GPU power meter. Our quantitative results show that a multi-linear model, which produces a mean absolute error of 6%, works the best in practice. An application-specific quadratic model reduces the error to nearly 1%. We show that this model can be constructed with low overhead and high accuracy at runtime. To the best of our knowledge, this is the first work attempting to model the instantaneous power of a real GPU system, earlier related work focused on average power.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Accurate power estimation at runtime is essential for the efficient functioning of a power management system. While years of research have yielded accurate power models for the online prediction of instantaneous power for CPUs, such power models for graphics processing units (GPUs) are lacking. GPUs rely on low-resolution power meters that only nominally support basic power management. To address this, we propose an instantaneous power model, and in turn, a power estimator, that uses performance counters in a novel way so as to deliver accurate power estimation at runtime. Our power estimator runs on two real NVIDIA GPUs to show that accurate runtime estimation is possible without the need for the high-fidelity details that are assumed on simulation-based power models. To construct our power model, we first use correlation analysis to identify a concise set of performance counters that work well despite GPU device limitations. Next, we explore several statistical regression techniques and identify the best one. Then, to improve the prediction accuracy, we propose a novel application-dependent modeling technique, where the model is constructed online at runtime, based on the readings from a low-resolution, built-in GPU power meter. Our quantitative results show that a multi-linear model, which produces a mean absolute error of 6%, works the best in practice. An application-specific quadratic model reduces the error to nearly 1%. We show that this model can be constructed with low overhead and high accuracy at runtime. To the best of our knowledge, this is the first work attempting to model the instantaneous power of a real GPU system, earlier related work focused on average power.