A Neuro-beta-Elliptic Model for Handwriting Generation Movements

Mahmoud Ltaief, H. Bezine, A. Alimi
{"title":"A Neuro-beta-Elliptic Model for Handwriting Generation Movements","authors":"Mahmoud Ltaief, H. Bezine, A. Alimi","doi":"10.1109/ICFHR.2012.161","DOIUrl":null,"url":null,"abstract":"A neural network model for handwritten script generation is proposed, in which curvilinear velocity signals are approximated by the Beta profiles. For each Beta profile we associate an elliptic arc to fit the initial stroke in the trajectory domain. The network architecture consists of an input layer which uploads the set of Beta-elliptic characteristics as input, hidden layers and the output layer where script coordinates X(t) and Y(t) are estimated. A separate timing network prepares the input data. This latter involves the time-index starting time of each simple stroke for an appropriate handwriting movement signal. The experiments showed that the neural network model could be applied for the case of Latin handwriting scripts as well as Arabic handwriting scripts. New ways are proposed for the application of the neural network model such as: generation of complex handwriting movements, shape and character recognition.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

A neural network model for handwritten script generation is proposed, in which curvilinear velocity signals are approximated by the Beta profiles. For each Beta profile we associate an elliptic arc to fit the initial stroke in the trajectory domain. The network architecture consists of an input layer which uploads the set of Beta-elliptic characteristics as input, hidden layers and the output layer where script coordinates X(t) and Y(t) are estimated. A separate timing network prepares the input data. This latter involves the time-index starting time of each simple stroke for an appropriate handwriting movement signal. The experiments showed that the neural network model could be applied for the case of Latin handwriting scripts as well as Arabic handwriting scripts. New ways are proposed for the application of the neural network model such as: generation of complex handwriting movements, shape and character recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手写体生成运动的神经-椭圆模型
提出了一种手写体生成的神经网络模型,该模型利用Beta曲线逼近曲线速度信号。对于每个Beta轮廓,我们关联一个椭圆弧来拟合轨迹域中的初始行程。网络架构由输入层(将beta椭圆特征集作为输入)、隐藏层和输出层(其中估计脚本坐标X(t)和Y(t))组成。一个单独的定时网络准备输入数据。后者涉及每个简单笔画的时间索引开始时间,以获得适当的手写运动信号。实验结果表明,该神经网络模型既适用于拉丁笔迹,也适用于阿拉伯笔迹。为神经网络模型的应用提出了新的途径,如:复杂手写动作的生成、形状和字符识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-Line Features Integration for On-Line Handwriting Graphemes Modeling Improvement Analysis of Different Subspace Mixture Models in Handwriting Recognition Structural Learning for Writer Identification in Offline Handwriting A Study of Handwritten Characters by Shape Descriptors: Doping Using the Freeman Code Dynamic Programming Matching with Global Features for Online Character Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1