A multi-criteria model for robust foreground extraction

A. H. Kamkar-Parsi, R. Laganière, M. Bouchard
{"title":"A multi-criteria model for robust foreground extraction","authors":"A. H. Kamkar-Parsi, R. Laganière, M. Bouchard","doi":"10.1145/1099396.1099410","DOIUrl":null,"url":null,"abstract":"Numerous methods are currently available for motion detection using background modeling and subtraction. However, there are still many challenges to take into account such as moving shadows, illumination changes, moving background, relocation of background objects, and initialization with moving objects. This paper provides a new background subtraction algorithm that aggregates the classification results of several foreground extraction techniques based on UV color deviations, probabilistic gradient information and vector deviations, in order to produce a single decision that is more robust to those challenges.","PeriodicalId":196499,"journal":{"name":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1099396.1099410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerous methods are currently available for motion detection using background modeling and subtraction. However, there are still many challenges to take into account such as moving shadows, illumination changes, moving background, relocation of background objects, and initialization with moving objects. This paper provides a new background subtraction algorithm that aggregates the classification results of several foreground extraction techniques based on UV color deviations, probabilistic gradient information and vector deviations, in order to produce a single decision that is more robust to those challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒前景提取的多准则模型
目前有许多方法可用于使用背景建模和减法进行运动检测。然而,仍然有许多挑战需要考虑,如移动阴影、照明变化、移动背景、背景对象的重新定位以及移动对象的初始化。本文提出了一种新的背景减除算法,该算法将几种基于UV颜色偏差、概率梯度信息和向量偏差的前景提取技术的分类结果聚合在一起,从而产生一个对这些挑战更具鲁棒性的单一决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards event detection in an audio-based sensor network Coopetitive visual surveillance using model predictive control Proceedings of the third ACM international workshop on Video surveillance & sensor networks Timeline-based information assimilation in multimedia surveillance and monitoring systems Automatic pan-tilt-zoom calibration in the presence of hybrid sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1