Adaptive vector quantization .II. Classification and comparison of algorithms

J. Fowler
{"title":"Adaptive vector quantization .II. Classification and comparison of algorithms","authors":"J. Fowler","doi":"10.1109/DCC.1997.582095","DOIUrl":null,"url":null,"abstract":"Summary form only given. For pt.I see ibid., p.436, 1997. We review prominent examples of adaptive vector quantization (AVQ) algorithms from prior literature and develop a classification of these algorithms. Well known theorems from rate-distortion theory suggest two approaches to the nonadaptive vector quantization (VQ) of a stationary, ergodic random process. These two nonadaptive VQ approaches have, in turn, inspired two general types of AVQ algorithms for the coding of nonstationary sources. In constrained-distortion AVQ algorithms, the algorithm limits the distortion to some maximum value and then attempts to minimize the rate subject to this distortion constraint. Constrained-rate AVQ algorithms do the opposite, limiting the rate to be less than or equal to some maximum value and attempting to produce a coding with the smallest distortion. A third category of AVQ algorithms, rate-distortion-based algorithms minimize the rate-distortion cost functions. We discuss each of the three categories of AVQ algorithms in detail and mention notable algorithms found in each category. Afterwards, we summarize the discussion with an algorithm taxonomy. Finally, we present experimental results for several prominent AVQ algorithms on an artificial nonstationary random process. Our results suggest that, one, the class of rate-distortion-based algorithms is capable of coding performance superior than that of other algorithms, particularly for low-rate coding, and, two, that complex, batch coding algorithms are not as competitive as simpler, online algorithms.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. For pt.I see ibid., p.436, 1997. We review prominent examples of adaptive vector quantization (AVQ) algorithms from prior literature and develop a classification of these algorithms. Well known theorems from rate-distortion theory suggest two approaches to the nonadaptive vector quantization (VQ) of a stationary, ergodic random process. These two nonadaptive VQ approaches have, in turn, inspired two general types of AVQ algorithms for the coding of nonstationary sources. In constrained-distortion AVQ algorithms, the algorithm limits the distortion to some maximum value and then attempts to minimize the rate subject to this distortion constraint. Constrained-rate AVQ algorithms do the opposite, limiting the rate to be less than or equal to some maximum value and attempting to produce a coding with the smallest distortion. A third category of AVQ algorithms, rate-distortion-based algorithms minimize the rate-distortion cost functions. We discuss each of the three categories of AVQ algorithms in detail and mention notable algorithms found in each category. Afterwards, we summarize the discussion with an algorithm taxonomy. Finally, we present experimental results for several prominent AVQ algorithms on an artificial nonstationary random process. Our results suggest that, one, the class of rate-distortion-based algorithms is capable of coding performance superior than that of other algorithms, particularly for low-rate coding, and, two, that complex, batch coding algorithms are not as competitive as simpler, online algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应矢量量化。算法的分类和比较
只提供摘要形式。见同上,第436页,1997年。我们回顾了先前文献中自适应矢量量化(AVQ)算法的突出例子,并对这些算法进行了分类。速率失真理论中众所周知的定理为平稳遍历随机过程的非自适应矢量量化(VQ)提出了两种方法。这两种非自适应VQ方法反过来启发了用于非平稳源编码的两种一般类型的AVQ算法。在约束失真AVQ算法中,该算法将失真限制在某个最大值,然后在此失真约束下尝试最小化速率。约束速率AVQ算法则相反,将速率限制在小于或等于某个最大值,并试图产生具有最小失真的编码。AVQ算法的第三类,基于率失真的算法最小化率失真代价函数。我们详细讨论了AVQ算法的三个类别,并提到了在每个类别中发现的值得注意的算法。随后,我们用一个算法分类法对讨论进行了总结。最后,我们给出了几种主要的AVQ算法在人工非平稳随机过程上的实验结果。我们的研究结果表明,第一,基于速率失真的算法能够比其他算法的编码性能更好,特别是对于低速率编码,第二,复杂的批量编码算法不如更简单的在线算法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust image coding with perceptual-based scalability Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework Region-based video coding with embedded zero-trees Progressive Ziv-Lempel encoding of synthetic images Compressing address trace data for cache simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1