Probing Complexity with Epidemics: A New Reactive Immunization Strategy

E. Alfinito, M. Beccaria, A. Fachechi, G. Macorini
{"title":"Probing Complexity with Epidemics: A New Reactive Immunization Strategy","authors":"E. Alfinito, M. Beccaria, A. Fachechi, G. Macorini","doi":"10.5220/0006361301160123","DOIUrl":null,"url":null,"abstract":"Epidemic evolution on complex networks strongly depends on their topology and the infection dynamical properties, as highly connected nodes and individuals exposed to the contagion have competing roles in the disease spreading. In this spirit, we propose a new immunization strategy exploiting the knowledge of network geometry and dynamical information about the spreading infection. The flexibility and effectiveness of the proposed scheme are successfully tested with numerical simulations on a wide set of complex networks.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"25 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006361301160123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epidemic evolution on complex networks strongly depends on their topology and the infection dynamical properties, as highly connected nodes and individuals exposed to the contagion have competing roles in the disease spreading. In this spirit, we propose a new immunization strategy exploiting the knowledge of network geometry and dynamical information about the spreading infection. The flexibility and effectiveness of the proposed scheme are successfully tested with numerical simulations on a wide set of complex networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探究流行病的复杂性:一种新的反应性免疫策略
复杂网络上的流行病演化在很大程度上取决于其拓扑结构和感染动力学特性,因为高度连接的节点和暴露于传染病的个体在疾病传播中具有竞争作用。在这种精神下,我们提出了一种利用网络几何知识和传播感染的动态信息的新的免疫策略。在一系列复杂网络上的数值模拟成功地验证了该方法的灵活性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moving Other Way: Exploring Word Mover Distance Extensions Artificial Neural Networks Jamming on the Beat FLOPTICS: A Novel Automated Gating Technique for Flow Cytometry Data It Means More if It Sounds Good: Yet Another Hypotheses Concerning the Evolution of Polysemous Words An Empirical Research on the Investment Strategy of Stock Market based on Deep Reinforcement Learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1