A comparative Analysis of Two Multiobjective Metaheuristic Methods using Performance Metrics

H. Bouali, B. Benhala, M. Guerbaoui
{"title":"A comparative Analysis of Two Multiobjective Metaheuristic Methods using Performance Metrics","authors":"H. Bouali, B. Benhala, M. Guerbaoui","doi":"10.1109/IRASET57153.2023.10153049","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of the current state of research on multi-objective problems and compares two multi-objective metaheuristic methods: Multi-Objective Artificial Bee Colony (MOABC) and Non-Dominant Sorting Genetic Algorithm II (NSGA-II). The study evaluates the performance of these methods using three multi-objective test functions and three metrics: Generational Distance (GD), Spacing (SP), and Computational Time (CT). The results show that MOABC is the most suitable algorithm for multi-objective problems in terms of convergence and robustness, as indicated by the evaluation metrics.","PeriodicalId":228989,"journal":{"name":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET57153.2023.10153049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides an overview of the current state of research on multi-objective problems and compares two multi-objective metaheuristic methods: Multi-Objective Artificial Bee Colony (MOABC) and Non-Dominant Sorting Genetic Algorithm II (NSGA-II). The study evaluates the performance of these methods using three multi-objective test functions and three metrics: Generational Distance (GD), Spacing (SP), and Computational Time (CT). The results show that MOABC is the most suitable algorithm for multi-objective problems in terms of convergence and robustness, as indicated by the evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用绩效指标的两种多目标元启发式方法的比较分析
本文综述了多目标问题的研究现状,并对多目标人工蜂群(MOABC)和非优势排序遗传算法(NSGA-II)两种多目标元启发式方法进行了比较。该研究使用三个多目标测试函数和三个指标来评估这些方法的性能:世代距离(GD)、间隔(SP)和计算时间(CT)。结果表明,从收敛性和鲁棒性两方面来看,MOABC算法是最适合多目标问题的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of NDVI to improve cereals agriculture: A review Deep Learning Technique for Classification of Breast Cancer using Ultrasound Images Evaluation of the efficiency of a cooling system using PCM materials for glazed and unglazed PV panels Performance Analysis of Monocrystalline PV Module Under the Effect of Moroccan Arid Climatic Conditions Design of Textile Substrates with Desired Air Permeability for E-textiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1