{"title":"Which Body Is Mine?","authors":"M. R. Sayed, T. Sim, Joo-Hwee Lim, K. Ma","doi":"10.1109/WACV.2019.00093","DOIUrl":null,"url":null,"abstract":"In the light of the human studies that report a strong correlation between head circumference and body size, we propose a new research problem: head-body matching. Given an image of a person's head, we want to match it with his body (headless) image. We propose a dual-pathway framework which computes head and body discriminating features independently, and learns the correlation between such features. We introduce a comprehensive evaluation of our proposed framework for this problem using different features including anthropometric features and deep-CNN features, different experimental setting such as head-body scale variations, and different body parts. We demonstrate the usefulness of our framework with two novel applications: head/body recognition, and T-shirt sizing from a head image. Our evaluations for head/body recognition application on the challenging large scale PIPA dataset (contains high variations of pose, viewpoint, and occlusion) show up to 53% of performance improvement using deep-CNN features, over the global model features in which head and body features are not separated or correlated. For T-shirt sizing application, we use anthropometric features for head-body matching. We achieve promising experimental results on small and challenging datasets.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the light of the human studies that report a strong correlation between head circumference and body size, we propose a new research problem: head-body matching. Given an image of a person's head, we want to match it with his body (headless) image. We propose a dual-pathway framework which computes head and body discriminating features independently, and learns the correlation between such features. We introduce a comprehensive evaluation of our proposed framework for this problem using different features including anthropometric features and deep-CNN features, different experimental setting such as head-body scale variations, and different body parts. We demonstrate the usefulness of our framework with two novel applications: head/body recognition, and T-shirt sizing from a head image. Our evaluations for head/body recognition application on the challenging large scale PIPA dataset (contains high variations of pose, viewpoint, and occlusion) show up to 53% of performance improvement using deep-CNN features, over the global model features in which head and body features are not separated or correlated. For T-shirt sizing application, we use anthropometric features for head-body matching. We achieve promising experimental results on small and challenging datasets.