{"title":"A novel slow-wave structure for millimeter-wave filter application on bulk CMOS","authors":"Bo Yang, E. Skafidas, R. Evans","doi":"10.1109/RWS.2011.5725502","DOIUrl":null,"url":null,"abstract":"A novel slow-wave structure for microstrip lines is proposed. Unlike conventional slow-wave structures such as photonic bandgap (PBG) and ladder microstrip lines, which only deal with the substrate, ground plane or the signal line of a microstrip separately, the periodic patterns of this new slow-wave structure are etched in both the conductive metal strip and the ground plane of the proposed microstrip line. No extra drilling through the substrate is required. The designed slow-wave structure exhibits that size reduction and minimal loss increase can be achieved simultaneously. 2nd-order rectangular open-loop filters with and without implementing the proposed slow-wave structure have been designed and fabricated in the millimeter-wave (mm-wave) range on 65-nm bulk CMOS. Both simulations and measurements demonstrate the new design has a 52.7% size reduction with only 0.5 dB penalty in transmission loss. To author's best knowledge this compact filter is the first reported mm-wave filter using slow-wave structure on bulk CMOS.","PeriodicalId":250672,"journal":{"name":"2011 IEEE Radio and Wireless Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2011.5725502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A novel slow-wave structure for microstrip lines is proposed. Unlike conventional slow-wave structures such as photonic bandgap (PBG) and ladder microstrip lines, which only deal with the substrate, ground plane or the signal line of a microstrip separately, the periodic patterns of this new slow-wave structure are etched in both the conductive metal strip and the ground plane of the proposed microstrip line. No extra drilling through the substrate is required. The designed slow-wave structure exhibits that size reduction and minimal loss increase can be achieved simultaneously. 2nd-order rectangular open-loop filters with and without implementing the proposed slow-wave structure have been designed and fabricated in the millimeter-wave (mm-wave) range on 65-nm bulk CMOS. Both simulations and measurements demonstrate the new design has a 52.7% size reduction with only 0.5 dB penalty in transmission loss. To author's best knowledge this compact filter is the first reported mm-wave filter using slow-wave structure on bulk CMOS.