Modelling Electricity and Heat Supply with Renewable Infeed and Seasonal Storages on a Local Level using Multi-Period Optimal Power Flow

M. Böhringer, Manuel Schwenke, J. Hanson
{"title":"Modelling Electricity and Heat Supply with Renewable Infeed and Seasonal Storages on a Local Level using Multi-Period Optimal Power Flow","authors":"M. Böhringer, Manuel Schwenke, J. Hanson","doi":"10.1109/UPEC55022.2022.9917866","DOIUrl":null,"url":null,"abstract":"In this paper, an optimal power flow model for electricity and heat distribution in district networks is demonstrated. The algorithm is based on the AC power-flow equations and solves problems with a time horizon of up to an entire year with the intention to size and operate generation and storage equipment. The interior-point solver PIPS, that allows to include non-linear and linear constraints and variable bounds is used to solve the problem. To decrease computational effort, an algorithm for time series aggregation is introduced, that allows to maintain the seasonal, as well as the hourly characteristics of the time series while significantly reducing the computation time. Besides the electrical network, a district heating network is modelled. This allows various couplings through generation or storage equipment to be integrated into the model. It could be shown, that, with a joint consideration of electricity and heat in the model, a high self-sufficiency of a district energy system can be achieved while at the same time the costs can be lowered. As a side effect, other operating parameters, such as voltage stability, are significantly improved.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an optimal power flow model for electricity and heat distribution in district networks is demonstrated. The algorithm is based on the AC power-flow equations and solves problems with a time horizon of up to an entire year with the intention to size and operate generation and storage equipment. The interior-point solver PIPS, that allows to include non-linear and linear constraints and variable bounds is used to solve the problem. To decrease computational effort, an algorithm for time series aggregation is introduced, that allows to maintain the seasonal, as well as the hourly characteristics of the time series while significantly reducing the computation time. Besides the electrical network, a district heating network is modelled. This allows various couplings through generation or storage equipment to be integrated into the model. It could be shown, that, with a joint consideration of electricity and heat in the model, a high self-sufficiency of a district energy system can be achieved while at the same time the costs can be lowered. As a side effect, other operating parameters, such as voltage stability, are significantly improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多周期最优潮流的本地可再生馈电和季节性蓄电模型
本文提出了一种适用于区域电网的最优热电分配潮流模型。该算法以交流潮流方程为基础,在长达一年的时间范围内解决问题,旨在确定发电和存储设备的规模和运行情况。采用允许包含非线性和线性约束以及可变边界的内点求解器PIPS来求解该问题。为了减少计算工作量,引入了一种时间序列聚合算法,该算法可以保持时间序列的季节特征和小时特征,同时显着减少计算时间。除电网外,还对区域供热网络进行了建模。这允许通过发电或存储设备将各种耦合集成到模型中。可以看出,在模型中同时考虑电和热的情况下,可以实现区域能源系统的高度自给,同时降低成本。作为副作用,其他操作参数,如电压稳定性,得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of Extending an Existing Substation Automation System using IEC 61850 Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks Impact of the Photovoltaic Array Configuration on its Performance under Partial Shading Conditions The Impacts of The Temperature-Humidity Fluctuations in Substations and Practical Experimental Applications Synthesis and Characterization of Multi-level Pseudo-Random Sequences as Excitation Signals for System Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1