A Machine Learning Assisted Cell Selection Method for Drones in Cellular Networks

S. Zhang, F. Xue, N. Himayat, S. Talwar, H. T. Kung
{"title":"A Machine Learning Assisted Cell Selection Method for Drones in Cellular Networks","authors":"S. Zhang, F. Xue, N. Himayat, S. Talwar, H. T. Kung","doi":"10.1109/SPAWC.2018.8445967","DOIUrl":null,"url":null,"abstract":"We apply machine learning techniques to predict the cell quality for the aerial drones connecting with a standard cellular network on the ground. Stationary and strong spatial correlation of the aerial channels allow for exploiting predictive techniques for optimal cell selection based on few available neighboring observations. Yet, drastic cell quality changes due to the side lobes of base-station antenna patterns require advanced solutions for accurate prediction. In this paper, we propose a conditional random field based framework to predict a drone's best (or top few) candidates for the serving cell. Our results, assuming realistic antenna patterns as well as errors in the location estimates, show a high prediction accuracy, thereby illustrating the feasibility of exploiting learning approaches to predict the aerial channel environment.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We apply machine learning techniques to predict the cell quality for the aerial drones connecting with a standard cellular network on the ground. Stationary and strong spatial correlation of the aerial channels allow for exploiting predictive techniques for optimal cell selection based on few available neighboring observations. Yet, drastic cell quality changes due to the side lobes of base-station antenna patterns require advanced solutions for accurate prediction. In this paper, we propose a conditional random field based framework to predict a drone's best (or top few) candidates for the serving cell. Our results, assuming realistic antenna patterns as well as errors in the location estimates, show a high prediction accuracy, thereby illustrating the feasibility of exploiting learning approaches to predict the aerial channel environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜂窝式网络中无人机的机器学习辅助小区选择方法
我们应用机器学习技术来预测与地面标准蜂窝网络连接的空中无人机的蜂窝质量。固定的和强空间相关性的航空信道允许利用预测技术的最佳细胞选择基于少数可用的邻近观测。然而,由于基站天线方向图的侧瓣导致的剧烈的小区质量变化需要先进的解决方案来进行准确的预测。在本文中,我们提出了一个基于条件随机场的框架来预测无人机服务单元的最佳(或前几个)候选对象。我们的研究结果,假设真实的天线方向图以及位置估计中的误差,显示出很高的预测精度,从而说明利用学习方法预测空中信道环境的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1