{"title":"A brief review on visual tracking methods","authors":"Xiang Xiang","doi":"10.1109/IVSURV.2011.6157020","DOIUrl":null,"url":null,"abstract":"Long-term robust visual tracking is still a challenge, primarily due to the appearance changes of the scene and target. In this paper, we briefly review the recent progress in image representation, appearance model and motion model for building a general tracking system. The models reviewed here are basic enough to be applicable for tracking either single target or multiple targets. Special attention has been paid to the on-line adaptation of appearance model, a hot topic in the recent. Its key techniques have been discussed, such as classifier issue, on-line manner, sample selection and drifting problem. We notice that the recent state-of-the-art performances are generally given by a class of on-line boosting methods or ‘tracking-by-detection’ methods (e.g. OnlineBoost, SemiBoost, MIL-Track, TLD, etc.). Therefore, we validate them together with typical traditional methods (e.g. template matching, Mean Shift, optical flow, particle filter, FragTrack) on a challenging sequence for single person tracking. Qualitative comparison results are presented.","PeriodicalId":141829,"journal":{"name":"2011 Third Chinese Conference on Intelligent Visual Surveillance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third Chinese Conference on Intelligent Visual Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSURV.2011.6157020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Long-term robust visual tracking is still a challenge, primarily due to the appearance changes of the scene and target. In this paper, we briefly review the recent progress in image representation, appearance model and motion model for building a general tracking system. The models reviewed here are basic enough to be applicable for tracking either single target or multiple targets. Special attention has been paid to the on-line adaptation of appearance model, a hot topic in the recent. Its key techniques have been discussed, such as classifier issue, on-line manner, sample selection and drifting problem. We notice that the recent state-of-the-art performances are generally given by a class of on-line boosting methods or ‘tracking-by-detection’ methods (e.g. OnlineBoost, SemiBoost, MIL-Track, TLD, etc.). Therefore, we validate them together with typical traditional methods (e.g. template matching, Mean Shift, optical flow, particle filter, FragTrack) on a challenging sequence for single person tracking. Qualitative comparison results are presented.