{"title":"Memory management with explicit regions","authors":"David E. Gay, A. Aiken","doi":"10.1145/277650.277748","DOIUrl":null,"url":null,"abstract":"Much research has been devoted to studies of and algorithms for memory management based on garbage collection or explicit allocation and deallocation. An alternative approach, region-based memory management, has been known for decades, but has not been well-studied. In a region-based system each allocation specifies a region, and memory is reclaimed by destroying a region, freeing all the storage allocated therein. We show that on a suite of allocation-intensive C programs, regions are competitive with malloc/free and sometimes substantially faster. We also show that regions support safe memory management with low overhead. Experience with our benchmarks suggests that modifying many existing programs to use regions is not difficult.","PeriodicalId":365404,"journal":{"name":"Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/277650.277748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217
Abstract
Much research has been devoted to studies of and algorithms for memory management based on garbage collection or explicit allocation and deallocation. An alternative approach, region-based memory management, has been known for decades, but has not been well-studied. In a region-based system each allocation specifies a region, and memory is reclaimed by destroying a region, freeing all the storage allocated therein. We show that on a suite of allocation-intensive C programs, regions are competitive with malloc/free and sometimes substantially faster. We also show that regions support safe memory management with low overhead. Experience with our benchmarks suggests that modifying many existing programs to use regions is not difficult.