{"title":"The Influence of Turbulence and Reynolds Number on Multiple Slot Film Cooling Over the Suction Surface","authors":"L. Soma, F. Ames, S. Acharya","doi":"10.1115/GT2020-15619","DOIUrl":null,"url":null,"abstract":"\n Developing robust film cooling protection on the suction surface of a vane is critical to managing the high heat loads which exist there. Suction surface film cooling often produces high levels of film cooling but can be influenced by secondary flows and some dissipation due to free-stream turbulence. Directly downstream from suction surface film cooling, heat loads are often significantly mitigated and internal cooling levels can be modest. One thermodynamically efficient way to cool the suction surface of a vane is with a counter cooling scheme. This combined internal/external cooling method moves cooling air in a direction opposite to the external flow through an internal convection array. The coolant is then discharged upstream where the high level of film cooling can offset the reduced cooling potential of the spent cooling air.\n The present suction surface film cooling arrangement combines a slot film cooling discharge on the near suction surface from an incremental impingement cooling method with a second from a counter cooling section. A second counter cooling section is added further downstream on the suction surface. The internal cooling plenums replicate the geometry of the cooling methods to ensure the fluid dynamics of the flow discharging from the slots are representative of the actual internal cooling geometry. These film cooling flows have been tested at blowing ratios of 0.5 and 1.0 for the initial slot and blowing ratios of 0.15 and 0.3 for the two downstream slots. The measurements have been taken at exit chord Reynolds numbers of 500,000, 1,000,000, and 2,000,000 with inlet turbulence levels ranging from 0.7% to 12.6%. Film cooling effectiveness measurements were acquired using both thermocouples and infrared thermography. The infrared thermography shows the influence of secondary flows on film cooling coverage near the suction surface endwall junction. The film cooling effectiveness results at varied blowing ratios, turbulence levels and Reynolds numbers document the impact of these major variables on suction surface slot film cooling. The results provide a consistent picture of the slot film cooling for the present three slot arrangement on the suction surface and they support the development of an advanced double wall cooling method.","PeriodicalId":147616,"journal":{"name":"Volume 7B: Heat Transfer","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-15619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing robust film cooling protection on the suction surface of a vane is critical to managing the high heat loads which exist there. Suction surface film cooling often produces high levels of film cooling but can be influenced by secondary flows and some dissipation due to free-stream turbulence. Directly downstream from suction surface film cooling, heat loads are often significantly mitigated and internal cooling levels can be modest. One thermodynamically efficient way to cool the suction surface of a vane is with a counter cooling scheme. This combined internal/external cooling method moves cooling air in a direction opposite to the external flow through an internal convection array. The coolant is then discharged upstream where the high level of film cooling can offset the reduced cooling potential of the spent cooling air.
The present suction surface film cooling arrangement combines a slot film cooling discharge on the near suction surface from an incremental impingement cooling method with a second from a counter cooling section. A second counter cooling section is added further downstream on the suction surface. The internal cooling plenums replicate the geometry of the cooling methods to ensure the fluid dynamics of the flow discharging from the slots are representative of the actual internal cooling geometry. These film cooling flows have been tested at blowing ratios of 0.5 and 1.0 for the initial slot and blowing ratios of 0.15 and 0.3 for the two downstream slots. The measurements have been taken at exit chord Reynolds numbers of 500,000, 1,000,000, and 2,000,000 with inlet turbulence levels ranging from 0.7% to 12.6%. Film cooling effectiveness measurements were acquired using both thermocouples and infrared thermography. The infrared thermography shows the influence of secondary flows on film cooling coverage near the suction surface endwall junction. The film cooling effectiveness results at varied blowing ratios, turbulence levels and Reynolds numbers document the impact of these major variables on suction surface slot film cooling. The results provide a consistent picture of the slot film cooling for the present three slot arrangement on the suction surface and they support the development of an advanced double wall cooling method.