D-REPR: A Language for Describing and Mapping Diversely-Structured Data Sources to RDF

Binh Vu, J. Pujara, Craig A. Knoblock
{"title":"D-REPR: A Language for Describing and Mapping Diversely-Structured Data Sources to RDF","authors":"Binh Vu, J. Pujara, Craig A. Knoblock","doi":"10.1145/3360901.3364449","DOIUrl":null,"url":null,"abstract":"Publishing data sources to knowledge graphs is a complicated and laborious process as data sources are often heterogeneous, hierarchical and interlinked. As an example, food price datasets may contain product prices of various units at different markets and times, and different providers can have many choices of formats such as CSV, JSON or spreadsheet. Beyond data formats, these datasets may have differing layout, where one dataset may be organized as a row-based table or relational table (prices are in one column), while another may use a matrix table (prices are in one matrix). To address these problems, we present a novel data description language for mapping datasets to RDF. In particular, our language supports specifying the locations of source attributes in the sources, mapping of the attributes to ontologies, and simple rules to join the data of these attributes to output final RDF triples. Unlike existing approaches, our language is not restricted to specific data layouts such as the Nested Relational Model, or to specific data formats, such as spreadsheet. Our broad data description language presents a format-independent solution, allowing interlinking among multiple heterogeneous sources and representing many diverse data structures that existing tools are unable to handle.","PeriodicalId":116830,"journal":{"name":"Proceedings of the 10th International Conference on Knowledge Capture","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Knowledge Capture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360901.3364449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Publishing data sources to knowledge graphs is a complicated and laborious process as data sources are often heterogeneous, hierarchical and interlinked. As an example, food price datasets may contain product prices of various units at different markets and times, and different providers can have many choices of formats such as CSV, JSON or spreadsheet. Beyond data formats, these datasets may have differing layout, where one dataset may be organized as a row-based table or relational table (prices are in one column), while another may use a matrix table (prices are in one matrix). To address these problems, we present a novel data description language for mapping datasets to RDF. In particular, our language supports specifying the locations of source attributes in the sources, mapping of the attributes to ontologies, and simple rules to join the data of these attributes to output final RDF triples. Unlike existing approaches, our language is not restricted to specific data layouts such as the Nested Relational Model, or to specific data formats, such as spreadsheet. Our broad data description language presents a format-independent solution, allowing interlinking among multiple heterogeneous sources and representing many diverse data structures that existing tools are unable to handle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-REPR:描述和映射不同结构的数据源到RDF的语言
将数据源发布到知识图是一个复杂而费力的过程,因为数据源通常是异构的、分层的和相互关联的。例如,食品价格数据集可能包含不同市场和时间的各种单位的产品价格,不同的供应商可以有多种格式选择,如CSV、JSON或电子表格。除了数据格式之外,这些数据集可能具有不同的布局,其中一个数据集可能被组织为基于行的表或关系表(价格在一列中),而另一个数据集可能使用矩阵表(价格在一个矩阵中)。为了解决这些问题,我们提出了一种新的数据描述语言,用于将数据集映射到RDF。特别是,我们的语言支持指定源属性在源中的位置、属性到本体的映射,以及将这些属性的数据连接到输出最终RDF三元组的简单规则。与现有的方法不同,我们的语言不局限于特定的数据布局,比如嵌套关系模型,也不局限于特定的数据格式,比如电子表格。我们的广泛数据描述语言提供了一种独立于格式的解决方案,允许在多个异构源之间进行互连,并表示现有工具无法处理的许多不同的数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Appropriate Expressiveness of Planning Domain Models: An Urban Traffic Control Case Study Wikidata Completeness Profiling Using ProWD Searching for Evidence of Scientific News in Scholarly Big Data Reflections on Structured Common Sense in an Era of Machine Learning On the Robustness of Domain-Independent Planning Engines: The Impact of Poorly-Engineered Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1