Model Predictive Control Strategy for NPC Converter-based Wind Turbine with Switching Frequency Control

Pedro Catalán, Yanbo Wang, Zhe Chen, J. Arza
{"title":"Model Predictive Control Strategy for NPC Converter-based Wind Turbine with Switching Frequency Control","authors":"Pedro Catalán, Yanbo Wang, Zhe Chen, J. Arza","doi":"10.1109/SPEC52827.2021.9709437","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) has been previously proposed as an effective solution to perform power control for neutral-point-clamped (NPC) converter-based wind turbine. However, the appropriate control of switching frequency and the tuning of the weighting factors in the cost function are challenging and the study of stability is intrinsically complicated. This paper presents a design guideline of MPC-based power control strategy for NPC converter-wind turbine with online tuning to optimize switching frequency. Furthermore, the dynamic response of the MPC system is evaluated at different operating points and grid impedances. The frequency-scanning technique is proposed to validate the stability of the system. Finally, simulation results are given to validate the proposed MPC strategy for NPC converter-based wind turbine.","PeriodicalId":236251,"journal":{"name":"2021 IEEE Southern Power Electronics Conference (SPEC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC52827.2021.9709437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Model predictive control (MPC) has been previously proposed as an effective solution to perform power control for neutral-point-clamped (NPC) converter-based wind turbine. However, the appropriate control of switching frequency and the tuning of the weighting factors in the cost function are challenging and the study of stability is intrinsically complicated. This paper presents a design guideline of MPC-based power control strategy for NPC converter-wind turbine with online tuning to optimize switching frequency. Furthermore, the dynamic response of the MPC system is evaluated at different operating points and grid impedances. The frequency-scanning technique is proposed to validate the stability of the system. Finally, simulation results are given to validate the proposed MPC strategy for NPC converter-based wind turbine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于NPC变流器的风电机组开关频率控制模型预测控制策略
模型预测控制(MPC)作为中性点箝位(NPC)变流器型风力发电机组功率控制的有效解决方案,已被提出。然而,开关频率的适当控制和代价函数中权重因子的调整是一个挑战,稳定性的研究本质上是复杂的。本文提出了一种基于mpc的NPC变流器-风力发电机组功率控制策略的设计准则,并进行了在线调谐以优化开关频率。在此基础上,计算了不同工作点和不同栅极阻抗下MPC系统的动态响应。提出了频率扫描技术来验证系统的稳定性。最后,给出了仿真结果,验证了基于NPC变流器的风力机的MPC策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Household Power Quality Monitoring System Cost-effective and Independent Dual-Output Inverter for Wireless Power Transfer System under Coil Misalignment Distribution Network Optimization by Optimal Sizing and Placement of D-STATCOM using Teaching and Learning Based Optimization Algorithm Single Loop Control of a Common DC-Bus-Configured Traction Motor Emulator Using State Feedback Linearization Method Processor-in-the Loop Test and Experimental Validations for developed Nine level PV Inverter using High Performance ARM-STM32F407
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1