Band selection using independent component analysis for hyperspectral image processing

Hongtao Du, H. Qi, Xiaoling Wang, R. Ramanath, W. Snyder
{"title":"Band selection using independent component analysis for hyperspectral image processing","authors":"Hongtao Du, H. Qi, Xiaoling Wang, R. Ramanath, W. Snyder","doi":"10.1109/AIPR.2003.1284255","DOIUrl":null,"url":null,"abstract":"Although hyperspectral images provide abundant information about objects, their high dimensionality also substantially increases computational burden. Dimensionality reduction offers one approach to Hyperspectral Image (HSI) analysis. Currently, there are two methods to reduce the dimension, band selection and feature extraction. In this paper, we present a band selection method based on Independent Component Analysis (ICA). This method, instead of transforming the original hyperspectral images, evaluates the weight matrix to observe how each band contributes to the ICA unmixing procedure. It compares the average absolute weight coefficients of individual spectral bands and selects bands that contain more information. As a significant benefit, the ICA-based band selection retains most physical features of the spectral profiles given only the observations of hyperspectral images. We compare this method with ICA transformation and Principal Component Analysis (PCA) transformation on classification accuracy. The experimental results show that ICA-based band selection is more effective in dimensionality reduction for HSI analysis.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"158 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

Abstract

Although hyperspectral images provide abundant information about objects, their high dimensionality also substantially increases computational burden. Dimensionality reduction offers one approach to Hyperspectral Image (HSI) analysis. Currently, there are two methods to reduce the dimension, band selection and feature extraction. In this paper, we present a band selection method based on Independent Component Analysis (ICA). This method, instead of transforming the original hyperspectral images, evaluates the weight matrix to observe how each band contributes to the ICA unmixing procedure. It compares the average absolute weight coefficients of individual spectral bands and selects bands that contain more information. As a significant benefit, the ICA-based band selection retains most physical features of the spectral profiles given only the observations of hyperspectral images. We compare this method with ICA transformation and Principal Component Analysis (PCA) transformation on classification accuracy. The experimental results show that ICA-based band selection is more effective in dimensionality reduction for HSI analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立分量分析的波段选择在高光谱图像处理中的应用
虽然高光谱图像提供了丰富的目标信息,但其高维性也大大增加了计算负担。降维是高光谱图像分析的一种方法。目前,图像降维主要有两种方法:波段选择和特征提取。本文提出了一种基于独立分量分析(ICA)的波段选择方法。该方法不是对原始高光谱图像进行变换,而是对权重矩阵进行评估,以观察每个波段对ICA解混过程的贡献。它比较各个光谱波段的平均绝对权重系数,并选择包含更多信息的波段。作为一个显著的好处,基于ica的波段选择保留了光谱剖面的大多数物理特征,仅给出了高光谱图像的观测结果。我们将该方法与ICA变换和主成分分析(PCA)变换在分类精度上进行了比较。实验结果表明,基于ica的波段选择在HSI分析中具有较好的降维效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum image processing (QuIP) Dual band (MWIR/LWIR) hyperspectral imager Fusion techniques for automatic target recognition Perspectives on the fusion of image and non-image data Eigenviews for object recognition in multispectral imaging systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1