Adaptions for Automotive Radar Based Occupancy Gridmaps

Robert Prophet, H. Stark, Marcel Hoffmann, C. Sturm, M. Vossiek
{"title":"Adaptions for Automotive Radar Based Occupancy Gridmaps","authors":"Robert Prophet, H. Stark, Marcel Hoffmann, C. Sturm, M. Vossiek","doi":"10.1109/ICMIM.2018.8443484","DOIUrl":null,"url":null,"abstract":"Environment models are necessary for autonomous driving. The distinction between drivable and non-drivable underground is elementary. This paper presents adaptions for radar based occupancy gridmaps, which are a common representation of the environment. In contrast to standard occupancy gridmaps or in general standard inverse radar sensor models, our approach works with velocity dependent parameters and extends free space calculations. Consequently, the map quality varies less and the information content of the ego vehicle's immediate vicinity is higher. Experiments with ground truth data show that the proposed algorithm produces accurate environment models in urban scenes.","PeriodicalId":342532,"journal":{"name":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2018.8443484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Environment models are necessary for autonomous driving. The distinction between drivable and non-drivable underground is elementary. This paper presents adaptions for radar based occupancy gridmaps, which are a common representation of the environment. In contrast to standard occupancy gridmaps or in general standard inverse radar sensor models, our approach works with velocity dependent parameters and extends free space calculations. Consequently, the map quality varies less and the information content of the ego vehicle's immediate vicinity is higher. Experiments with ground truth data show that the proposed algorithm produces accurate environment models in urban scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于汽车雷达的占用网格图的自适应
环境模型是自动驾驶的必要条件。地下可驾驶和不可驾驶的区别是基本的。本文介绍了基于雷达的占用网格图的自适应,这是一种常见的环境表示。与标准占用网格图或一般标准逆雷达传感器模型相比,我们的方法适用于速度相关参数,并扩展了自由空间计算。因此,地图质量变化较小,自我车辆附近的信息含量较高。基于地面真实数据的实验表明,该算法能在城市场景中生成准确的环境模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instantaneous Actual Motion Estimation with a Single High-Resolution Radar Sensor Ego-Motion Estimation using Distributed Single-Channel Radar Sensors Design and Implementation of a FMCW GPR for UAV-based Mine Detection UAV-Based Ground Penetrating Synthetic Aperture Radar Human Motion Training Data Generation for Radar Based Deep Learning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1