{"title":"Avrupa Topluluğu Ekonomik Faaliyetlerin İstatistiki Sınıflandırılması Kullanılarak Dengesiz Veri Setlerinde Sınıflandırma Problemine Bakış","authors":"Yasin Bektaş, Jale Bektas","doi":"10.46291/icontechvol5iss3pp31-37","DOIUrl":null,"url":null,"abstract":"Dengesiz ve çok sınıflı veri setlerinde klasik sınıflandırıcıların kullanılması her zaman bir sorun oluşturmuştur. Bu çalışmada Avrupa Topluluğunda Ekonomik Faaliyetlerin İstatistiki Sınıflaması (NACE) kodlarının tanımları üzerinde çok bilinen sınıflandırıcılar ile bir metin madenciliği uygulaması yapılmıştır. Çalışmada öncelikle orjinal verinin dengesiz yapısı üzerinde uygulama yapılmış, daha sonra sınıf bazında ağırlıklandırma yöntemiyle dengeli hale getirilerek sonuç verisi üzerinde tekrar test edilerek performans ölçümü gerçekleştirilmiştir. Testlerde Karar Ağaçları, Naiv Bayes, Destek Vektör Makineleri, Çapsal Tabanlı Fonksiyonlar ve Rastgele Orman algoritmaları gibi yaygın kullanılan sınıflandırıcılar kullanılmıştır. Çalışma bize Karar Ağaçlarının veri dengelenmesi neticesinde F-skor değerinin %17.43’ den %92’ ye çıkarak en iyi performansı verdiğini göstermiştir.","PeriodicalId":288570,"journal":{"name":"ICONTECH INTERNATIONAL JOURNAL","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONTECH INTERNATIONAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46291/icontechvol5iss3pp31-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dengesiz ve çok sınıflı veri setlerinde klasik sınıflandırıcıların kullanılması her zaman bir sorun oluşturmuştur. Bu çalışmada Avrupa Topluluğunda Ekonomik Faaliyetlerin İstatistiki Sınıflaması (NACE) kodlarının tanımları üzerinde çok bilinen sınıflandırıcılar ile bir metin madenciliği uygulaması yapılmıştır. Çalışmada öncelikle orjinal verinin dengesiz yapısı üzerinde uygulama yapılmış, daha sonra sınıf bazında ağırlıklandırma yöntemiyle dengeli hale getirilerek sonuç verisi üzerinde tekrar test edilerek performans ölçümü gerçekleştirilmiştir. Testlerde Karar Ağaçları, Naiv Bayes, Destek Vektör Makineleri, Çapsal Tabanlı Fonksiyonlar ve Rastgele Orman algoritmaları gibi yaygın kullanılan sınıflandırıcılar kullanılmıştır. Çalışma bize Karar Ağaçlarının veri dengelenmesi neticesinde F-skor değerinin %17.43’ den %92’ ye çıkarak en iyi performansı verdiğini göstermiştir.