A large-scale empirical analysis of the vulnerabilities introduced by third-party components in IoT firmware

Binbin Zhao, S. Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang, Chenyang Lyu, Xuhong Zhang, Changting Lin, Jingzheng Wu, R. Beyah
{"title":"A large-scale empirical analysis of the vulnerabilities introduced by third-party components in IoT firmware","authors":"Binbin Zhao, S. Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang, Chenyang Lyu, Xuhong Zhang, Changting Lin, Jingzheng Wu, R. Beyah","doi":"10.1145/3533767.3534366","DOIUrl":null,"url":null,"abstract":"As the core of IoT devices, firmware is undoubtedly vital. Currently, the development of IoT firmware heavily depends on third-party components (TPCs), which significantly improves the development efficiency and reduces the cost. Nevertheless, TPCs are not secure, and the vulnerabilities in TPCs will turn back influence the security of IoT firmware. Currently, existing works pay less attention to the vulnerabilities caused by TPCs, and we still lack a comprehensive understanding of the security impact of TPC vulnerability against firmware. To fill in the knowledge gap, we design and implement FirmSec, which leverages syntactical features and control-flow graph features to detect the TPCs at version-level in firmware, and then recognizes the corresponding vulnerabilities. Based on FirmSec, we present the first large-scale analysis of the usage of TPCs and the corresponding vulnerabilities in firmware. More specifically, we perform an analysis on 34,136 firmware images, including 11,086 publicly accessible firmware images, and 23,050 private firmware images from TSmart. We successfully detect 584 TPCs and identify 128,757 vulnerabilities caused by 429 CVEs. Our in-depth analysis reveals the diversity of security issues for different kinds of firmware from various vendors, and discovers some well-known vulnerabilities are still deeply rooted in many firmware images. We also find that the TPCs used in firmware have fallen behind by five years on average. Besides, we explore the geographical distribution of vulnerable devices, and confirm the security situation of devices in several regions, e.g., South Korea and China, is more severe than in other regions. Further analysis shows 2,478 commercial firmware images have potentially violated GPL/AGPL licensing terms.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3534366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

As the core of IoT devices, firmware is undoubtedly vital. Currently, the development of IoT firmware heavily depends on third-party components (TPCs), which significantly improves the development efficiency and reduces the cost. Nevertheless, TPCs are not secure, and the vulnerabilities in TPCs will turn back influence the security of IoT firmware. Currently, existing works pay less attention to the vulnerabilities caused by TPCs, and we still lack a comprehensive understanding of the security impact of TPC vulnerability against firmware. To fill in the knowledge gap, we design and implement FirmSec, which leverages syntactical features and control-flow graph features to detect the TPCs at version-level in firmware, and then recognizes the corresponding vulnerabilities. Based on FirmSec, we present the first large-scale analysis of the usage of TPCs and the corresponding vulnerabilities in firmware. More specifically, we perform an analysis on 34,136 firmware images, including 11,086 publicly accessible firmware images, and 23,050 private firmware images from TSmart. We successfully detect 584 TPCs and identify 128,757 vulnerabilities caused by 429 CVEs. Our in-depth analysis reveals the diversity of security issues for different kinds of firmware from various vendors, and discovers some well-known vulnerabilities are still deeply rooted in many firmware images. We also find that the TPCs used in firmware have fallen behind by five years on average. Besides, we explore the geographical distribution of vulnerable devices, and confirm the security situation of devices in several regions, e.g., South Korea and China, is more severe than in other regions. Further analysis shows 2,478 commercial firmware images have potentially violated GPL/AGPL licensing terms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对物联网固件中第三方组件引入的漏洞进行大规模实证分析
作为物联网设备的核心,固件无疑是至关重要的。目前,物联网固件的开发严重依赖第三方组件(tpc),这大大提高了开发效率,降低了成本。然而,tpc并不安全,tpc中的漏洞会反过来影响物联网固件的安全性。目前,现有工作对TPC漏洞的关注较少,对TPC漏洞对固件的安全影响还缺乏全面的认识。为了填补知识空白,我们设计并实现了FirmSec,它利用语法特征和控制流图特征来检测固件中的版本级tpc,然后识别相应的漏洞。基于FirmSec,我们首次对tpc的使用情况和固件中相应的漏洞进行了大规模分析。更具体地说,我们对34,136个固件映像进行了分析,其中包括11,086个公开访问的固件映像,以及来自TSmart的23,050个私有固件映像。我们成功检测出584个tpc,识别出429个cve导致的128,757个漏洞。我们的深入分析揭示了来自不同供应商的不同类型固件的安全问题的多样性,并发现一些众所周知的漏洞仍然深深植根于许多固件映像中。我们还发现固件中使用的tpc平均落后了5年。此外,我们还对脆弱设备的地理分布进行了探索,确认了韩国、中国等几个地区的设备安全状况比其他地区更为严重。进一步分析显示,2478个商业固件镜像可能违反了GPL/AGPL许可条款。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One step further: evaluating interpreters using metamorphic testing Faster mutation analysis with MeMu Test mimicry to assess the exploitability of library vulnerabilities A large-scale study of usability criteria addressed by static analysis tools NCScope: hardware-assisted analyzer for native code in Android apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1