Continuous learning mechanism of NLU-ML models boosted by human feedback

G. Abinaya, Gyan Ranjan, P. Aswin Karthik
{"title":"Continuous learning mechanism of NLU-ML models boosted by human feedback","authors":"G. Abinaya, Gyan Ranjan, P. Aswin Karthik","doi":"10.1109/ICCIDS.2019.8862102","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework that enables a machine learning model to constantly learn over a period of time and hence improve the performance with time and more data. We have compared the performance of different models which were trained only on the actual data against models trained with the data aided by the feedback collected by the automated framework.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":"344 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a novel framework that enables a machine learning model to constantly learn over a period of time and hence improve the performance with time and more data. We have compared the performance of different models which were trained only on the actual data against models trained with the data aided by the feedback collected by the automated framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类反馈促进NLU-ML模型的持续学习机制
在本文中,我们提出了一个新的框架,使机器学习模型能够在一段时间内不断学习,从而随着时间和数据的增加而提高性能。我们比较了仅在实际数据上训练的不同模型的性能,以及使用自动化框架收集的反馈辅助数据训练的模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Region Based Convolutional Neural Network for Human-Elephant Conflict Management System A Comparison of Regression Models for Prediction of Graduate Admissions Feature selection with LASSO and VSURF to model mechanical properties for investment casting Med-Recommender System for Predictive Analysis of Hospitals and Doctors Analysis of Facial Landmark Features to determine the best subset for finding Face Orientation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1