Linear Network Error Correction Coding Revisited

Xuan Guang, R. Yeung
{"title":"Linear Network Error Correction Coding Revisited","authors":"Xuan Guang, R. Yeung","doi":"10.1109/ISIT44484.2020.9174493","DOIUrl":null,"url":null,"abstract":"We consider linear network error correction (LNEC) coding when errors may occur on the edges of a communication network of which the topology is known. In this paper, we first revisit and explore the framework of LNEC coding, and then unify two well-known LNEC coding approaches. In LNEC coding, LNEC maximum distance separable (MDS) codes are a type of most important optimal codes. However, the minimum required field size for the existence of LNEC MDS codes is an open problem not only of theoretical interest but also of practical importance, because it is closely related to the implementation of such coding schemes in terms of computational complexity and storage requirement. In this paper, we obtain an improved lower bound on the required field size by developing a graphtheoretic approach. The improvement over the existing results is in general significant. Furthermore, by applying the graphtheoretic approach to the framework of LNEC coding, we obtain a significantly enhanced characterization of the capability of an LNEC code in terms of its minimum distance.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider linear network error correction (LNEC) coding when errors may occur on the edges of a communication network of which the topology is known. In this paper, we first revisit and explore the framework of LNEC coding, and then unify two well-known LNEC coding approaches. In LNEC coding, LNEC maximum distance separable (MDS) codes are a type of most important optimal codes. However, the minimum required field size for the existence of LNEC MDS codes is an open problem not only of theoretical interest but also of practical importance, because it is closely related to the implementation of such coding schemes in terms of computational complexity and storage requirement. In this paper, we obtain an improved lower bound on the required field size by developing a graphtheoretic approach. The improvement over the existing results is in general significant. Furthermore, by applying the graphtheoretic approach to the framework of LNEC coding, we obtain a significantly enhanced characterization of the capability of an LNEC code in terms of its minimum distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视线性网络纠错编码
我们考虑线性网络纠错(LNEC)编码时,错误可能发生在边缘的通信网络的拓扑是已知的。在本文中,我们首先回顾和探讨了LNEC编码的框架,然后统一了两种著名的LNEC编码方法。在LNEC编码中,最大距离可分离码(MDS)是一种重要的最优码。然而,LNEC MDS编码存在所需的最小字段大小是一个开放的问题,不仅具有理论意义,而且具有实际意义,因为它在计算复杂度和存储需求方面与这种编码方案的实现密切相关。本文通过发展图论的方法,得到了一个改进的所需域大小的下界。总的来说,对现有结果的改进是显著的。此外,通过将图论方法应用于LNEC编码框架,我们得到了LNEC编码在最小距离方面的能力的显著增强表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Community Detection with Secondary Latent Variables Capacity of Line-of-Sight MIMO Channels On the Randomized Babai Point A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs An Ideal Secret Sharing Scheme Realizing an Access Structure Based on a Finite Projective Plane of Order 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1