Ouijdane Guiza, Christoph Mayr-Dorn, G. Weichhart, M. Mayrhofer, Bahman Bahman Zangi, Alexander Egyed, Björn Fanta, Martin Gieler
{"title":"Automated Deviation Detection for Partially-Observable Human-Intensive Assembly Processes","authors":"Ouijdane Guiza, Christoph Mayr-Dorn, G. Weichhart, M. Mayrhofer, Bahman Bahman Zangi, Alexander Egyed, Björn Fanta, Martin Gieler","doi":"10.1109/INDIN45523.2021.9557502","DOIUrl":null,"url":null,"abstract":"Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.