Probabilistic Energy Flow Algorithm for Integrated Energy Systems Based on Fuzzy C-means Clustering

Xiao Xi, Yang Gao, Ying Wang, Xiaojun Wang, Yizhi Zhang, Weitao Chen
{"title":"Probabilistic Energy Flow Algorithm for Integrated Energy Systems Based on Fuzzy C-means Clustering","authors":"Xiao Xi, Yang Gao, Ying Wang, Xiaojun Wang, Yizhi Zhang, Weitao Chen","doi":"10.1109/CIEEC58067.2023.10167426","DOIUrl":null,"url":null,"abstract":"Integrated energy systems is an effective way to achieve carbon neutrality by improving the utilization of renewable energy through the synergistic complementation of multiple energy sources. At present, hard clustering algorithm such as K-means clustering is usually used for clustering in the probabilistic flow calculation of power system, but they will bring some error in the multi-energy coupling scenarios with multiple uncertain variables. Therefore, in this paper, we consider the uncertainty of renewable energy and multiple energy loads to model and apply the fuzzy C-means clustering algorithm in probabilistic energy flow calculation for the integrated energy systems of electricity, heat and gas. First, establish a hybrid energy flow model of the integrated energy systems considering the uncertainty and relevance of renewable energy and multiple energy loads. Then the cumulant method is used to solve the probabilistic energy flow and the fuzzy C-means clustering algorithm is used to cluster the scenarios and reduce the linearization error. Finally, the simulation analysis of the actual case shows the accuracy of the probabilistic energy flow calculation applying the fuzzy C-means clustering algorithm.","PeriodicalId":185921,"journal":{"name":"2023 IEEE 6th International Electrical and Energy Conference (CIEEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Electrical and Energy Conference (CIEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEEC58067.2023.10167426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated energy systems is an effective way to achieve carbon neutrality by improving the utilization of renewable energy through the synergistic complementation of multiple energy sources. At present, hard clustering algorithm such as K-means clustering is usually used for clustering in the probabilistic flow calculation of power system, but they will bring some error in the multi-energy coupling scenarios with multiple uncertain variables. Therefore, in this paper, we consider the uncertainty of renewable energy and multiple energy loads to model and apply the fuzzy C-means clustering algorithm in probabilistic energy flow calculation for the integrated energy systems of electricity, heat and gas. First, establish a hybrid energy flow model of the integrated energy systems considering the uncertainty and relevance of renewable energy and multiple energy loads. Then the cumulant method is used to solve the probabilistic energy flow and the fuzzy C-means clustering algorithm is used to cluster the scenarios and reduce the linearization error. Finally, the simulation analysis of the actual case shows the accuracy of the probabilistic energy flow calculation applying the fuzzy C-means clustering algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊c均值聚类的综合能源系统概率能量流算法
综合能源系统通过多种能源的协同互补,提高可再生能源的利用率,是实现碳中和的有效途径。目前,电力系统概率潮流计算中通常采用K-means聚类等硬聚类算法进行聚类,但在具有多个不确定变量的多能耦合场景中会带来一定的误差。因此,本文考虑可再生能源和多种能源负荷的不确定性进行建模,并将模糊c均值聚类算法应用于电、热、气一体化能源系统的概率能量流计算。首先,考虑可再生能源和多种能源负荷的不确定性和相关性,建立综合能源系统的混合能量流模型。然后采用累积量法求解概率能量流,并采用模糊c均值聚类算法对场景进行聚类,减小线性化误差。最后,通过对实例的仿真分析,验证了模糊c均值聚类算法在概率能量流计算中的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensorless Control and Inductance Parameter Identification of PMSM Based on Two-Orientation High-Fequency Square Wave Injection Analysis and Design of Particle Trap in Transmission Line for the CRAFT NNBI System Business model based on bidding strategy for the Wind Power Plant and District Heating System portfolio considering ancillary services Fractal UWB Antenna for Partial Discharge UHF Detection in GIS Dynamic Reconfiguration Strategy for AC/DC Power Distribution System Considering Demand Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1