Pulmonary Nodules 3D Detection on Serial CT Scans

Suiyuan Wu, Junfeng Wang
{"title":"Pulmonary Nodules 3D Detection on Serial CT Scans","authors":"Suiyuan Wu, Junfeng Wang","doi":"10.1109/GCIS.2012.46","DOIUrl":null,"url":null,"abstract":"This paper describes a Computer-Aided Diagnosis (CAD) system for automatic pulmonary nodules detection on serial CT scans based on shape features. The system recognizes nodules by 3D geometric information through the process of interpolation, segmentation, suspicious area searching and recognition. Firstly, the serial CT images are interpolated to equal scales in X, Y and Z dimensions, in order to recover the original 3D shape of nodules. Secondly, pretreatment is implemented to segment the lung parenchyma region. Thirdly, detect objects called regions of interest (ROIs) as potential nodules by threshold of gray level and region growing. Finally, distinguish ROIs to find real nodules using moment invariants. The experimental results from CT scans data sets demonstrate that the proposed method yields a good performance of nodule detection. The system recognizes all the nodules of the data sets with a reasonable false positive (FP) 1/serial scans.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper describes a Computer-Aided Diagnosis (CAD) system for automatic pulmonary nodules detection on serial CT scans based on shape features. The system recognizes nodules by 3D geometric information through the process of interpolation, segmentation, suspicious area searching and recognition. Firstly, the serial CT images are interpolated to equal scales in X, Y and Z dimensions, in order to recover the original 3D shape of nodules. Secondly, pretreatment is implemented to segment the lung parenchyma region. Thirdly, detect objects called regions of interest (ROIs) as potential nodules by threshold of gray level and region growing. Finally, distinguish ROIs to find real nodules using moment invariants. The experimental results from CT scans data sets demonstrate that the proposed method yields a good performance of nodule detection. The system recognizes all the nodules of the data sets with a reasonable false positive (FP) 1/serial scans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续CT扫描肺结节的三维检测
本文介绍了一种基于形状特征的连续CT扫描肺结节自动检测计算机辅助诊断(CAD)系统。该系统通过插值、分割、可疑区域搜索和识别等过程,利用三维几何信息对结节进行识别。首先,对连续CT图像在X、Y、Z维度上进行等比插值,恢复结节的原始三维形状;其次,对肺实质区域进行预处理;第三,通过灰度阈值和区域增长,将感兴趣区域(roi)作为潜在结节进行检测。最后,利用矩不变量区分roi以找到真实结节。CT扫描数据集的实验结果表明,该方法具有良好的结节检测性能。系统以合理的假阳性(FP) 1/串行扫描识别数据集的所有结节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1