Simulation of Solar Cell Device Performance Based on Hydrogenated Microcrystal Silicon (µc-Si:H) With Finite Element Method (FEM)

L. Asmin
{"title":"Simulation of Solar Cell Device Performance Based on Hydrogenated Microcrystal Silicon (µc-Si:H) With Finite Element Method (FEM)","authors":"L. Asmin","doi":"10.20414/konstan.v7i1.136","DOIUrl":null,"url":null,"abstract":"The structure and thickness of the solar cell device layer have a big impact on how well the solar cell works. There for, the aim of this study was to examine how hydrogenated microcrystalline silicon solar cells’ thickness and device structure affected how well they work. Simulation or modeling of the structure in one dimension (1D) is used for the analysis.  MATLAB programming was used to analyze the simulation result. The optical band gap changes due to the influence of the structure, therefore the thickness of the p-, I, and n layers are kept constant at 250 Å, 9000 Å, and 250 Å respectively. The results showed that the maximum performance is obtained at the optical band gap, Eci = 1,39 eV, and the resulting power is 0.063465 Watt. Whereas in the simulation of the effect of the thickness on the i-layer, the optical band gap is set to a constant value of Eci = 1,4 eV, while the thickness of the p-layer and n-layer is set to 250 Å. The results also indicate that the maximum performance is at the i-layer thickness of 9000 Å and the power generated is 0.063364 Watt.","PeriodicalId":137476,"journal":{"name":"KONSTAN - JURNAL FISIKA DAN PENDIDIKAN FISIKA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONSTAN - JURNAL FISIKA DAN PENDIDIKAN FISIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20414/konstan.v7i1.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure and thickness of the solar cell device layer have a big impact on how well the solar cell works. There for, the aim of this study was to examine how hydrogenated microcrystalline silicon solar cells’ thickness and device structure affected how well they work. Simulation or modeling of the structure in one dimension (1D) is used for the analysis.  MATLAB programming was used to analyze the simulation result. The optical band gap changes due to the influence of the structure, therefore the thickness of the p-, I, and n layers are kept constant at 250 Å, 9000 Å, and 250 Å respectively. The results showed that the maximum performance is obtained at the optical band gap, Eci = 1,39 eV, and the resulting power is 0.063465 Watt. Whereas in the simulation of the effect of the thickness on the i-layer, the optical band gap is set to a constant value of Eci = 1,4 eV, while the thickness of the p-layer and n-layer is set to 250 Å. The results also indicate that the maximum performance is at the i-layer thickness of 9000 Å and the power generated is 0.063364 Watt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于氢化微晶硅(µc-Si:H)的太阳能电池器件性能有限元模拟
太阳能电池器件层的结构和厚度对太阳能电池的工作性能有很大的影响。因此,本研究的目的是研究氢化微晶硅太阳能电池的厚度和器件结构如何影响它们的工作效果。对结构进行一维(1D)模拟或建模进行分析。利用MATLAB编程对仿真结果进行分析。由于结构的影响,光学带隙会发生变化,因此p层、I层和n层的厚度保持不变,分别为250 Å、9000 Å和250 Å。结果表明,在光学带隙处,Eci = 1.39 eV时获得最大性能,输出功率为0.063465 w。而在厚度对i层影响的模拟中,光学带隙设为恒定值Eci = 1,4 eV,而p层和n层的厚度设为250 Å。结果还表明,在i层厚度为9000 Å时性能最佳,产生的功率为0.063364 w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review of Extraterrestrial Organic Carbon and its Potential Impact on Life on Earth Physical Characterization of Paper Made from Durian Peels and Corn Stalks Design and Development of A Portable Conductivity-Based Salinity Measurement System for Coastal Well Water An Overview of Ontological, Epistemological, and Axiological Aspects of the Junior High School Concept of Pressure Functional Group Analysis of Silica Gel Based on River Sand Magnetic Mineral as Heavy Metal Absorbance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1