{"title":"Detection and Classification of Malware Using Guided Whale Optimization Algorithm for Voting Ensemble","authors":"M. Eid, M. I. F. Allah","doi":"10.54216/jcim.100102","DOIUrl":null,"url":null,"abstract":"Malware is software that is designed to cause damage to computer systems. Locating malicious software is a crucial task in the cybersecurity industry. Malware authors and security experts are locked in a never-ending conflict. In order to combat modern malware, which often exhibits polymorphic behavior and a wide range of characteristics, novel countermeasures have had to be created. Here, we present a hybrid learning approach to malware detection and classification. In this scenario, we have merged the machine learning techniques of Random Forest and K-Nearest Neighbor Classifier to develop a hybrid learning model. We used current malware and an updated dataset of 10,000 examples of malicious and benign files, with 78 feature values and 6 different malware classes to deal with. We compared the model's results with those of current approaches after training it for both binary and multi-class classification. The suggested methodology may be utilized to create an anti-malware application that is capable of detecting malware on newly collected data.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Malware is software that is designed to cause damage to computer systems. Locating malicious software is a crucial task in the cybersecurity industry. Malware authors and security experts are locked in a never-ending conflict. In order to combat modern malware, which often exhibits polymorphic behavior and a wide range of characteristics, novel countermeasures have had to be created. Here, we present a hybrid learning approach to malware detection and classification. In this scenario, we have merged the machine learning techniques of Random Forest and K-Nearest Neighbor Classifier to develop a hybrid learning model. We used current malware and an updated dataset of 10,000 examples of malicious and benign files, with 78 feature values and 6 different malware classes to deal with. We compared the model's results with those of current approaches after training it for both binary and multi-class classification. The suggested methodology may be utilized to create an anti-malware application that is capable of detecting malware on newly collected data.